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ABSTRACT

In this paper we derive exact analytical expressions for the

noise squared norm in the frequency domain for Orthogonal

Frequency-Division Multiplex (OFDM) considering the two

generic scenarios: i) OFDM signal is affected by M randomly

positioned Gaussian impulses within the L-sized frame and ii)

OFDM signal is affected by the Gaussian white noise (back-

ground noise) and M randomly positioned Gaussian impulses

within the L-sized frame. Analysis of the noise squared norm

in (OFDM) is a completely novel approach, and we exploit

it in an accurate evaluation of the performance including the

distribution of errors per OFDM frame and the frame error

rate. Numerical results obtained for the noise squared dis-

tribution are compared with Monte Carlo simulations. The

comparison shows a full agreement even when the number of

impulses and the frame size are low.

Index Terms— Impulse noise, noise squared norm,

OFDM systems.

1. INTRODUCTION

Impulsive noise is an unwanted escort of communication sig-

nals in wireless channels which can significantly impair per-

formance of OFDM systems [1, 2, 3]. Performance evaluation

of OFDM systems affected by impulsive noise commonly re-

lies on assumption that the number of carriers per frame is

large [4, 1]. Such approximate approach works well in eval-

uating the average bit error rate (BER) and the symbol error

rate (SER) [3, 2]. Average BER and SER might be the most

interesting performance parameters. However, in many ap-

plications, the distribution of the number of errors per frame

and the frame error rate (FER) are interesting as well in ARQ

and frequency selective systems [5, 6]. When OFDM signal

is affected only by Gaussian white i.i.d. noise, the noise in the

frequency domain is also Gaussian i.i.d. and the SER, BER

and FER performance can be easily calculated [3, 7]. Owing

to i.i.d. noise property, number of errors per frame is a bi-

nomial random variable (RV). In this case the noise squared

norms per real and imaginary parts in the frequency domain
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are also i.i.d. chi-square RVs. However, when OFDM sig-

nal is affected by M Gaussian i.i.d. randomly positioned im-

pulses within the L-sized frame, the noise in the frequency

domain is not i.i.d. but is correlated among samples. Correla-

tion affects evaluation of distribution of the number of errors

per frame (which in this case is not a binomial RV), although

does not affect evaluation of average SER and BER. Distribu-

tion of the number of errors per frame, and consequently the

FER, can not be accurately evaluated by only knowing the

noise density in the frequency domain. In this case, knowl-

edge of a sum of squares of noise samples (the squared norm)

and its distribution are important. This issue is analysed and

discussed in [8, 9]. In this paper the exact closed-form formu-

las for the noise squared norm are derived for the two generic

noise scenarios mentioned in the abstract. Specifically, for

Bernoulli-Gaussian (BG) impulse noise scenario [3, 2] it is

easy to extend the formulas obtained for generic cases. For

more realistic scenarios including Middleton Class A, B im-

pulse noise [10], particularly an alpha-stable impulse noise

[11, 12] which is important due to its generality in representa-

tion the non-Gaussian heavy-tailed distributions, closed-form

expressions for the noise squared norms can be easily derived

when Class A or alpha-stable RVs are considered as the finite

Gaussian mixture [13].

The remainder of the paper is organized as follows. In

Section II we first show that the noise squared norm in the fre-

quency domain is the scaled mixture RV consisting of M+1

components, and in Section III we develop the distribution of

the scaled factors. Section IV shows numerical results and

their comparison with the results obtained by Monte Carlo

simulations. Section V gives some concluding remarks.

2. NOISE SQUARED NORM IN THE FREQUENCY

DOMAIN

Let M randomly positioned noise impulses interfere an L-

sized OFDM signal in the time domain. Let L be even, as

it is a realistic case in OFDM systems. If noise impulse am-

plitude is Gaussian n ∼ N (0, σ2
n) and i.i.d., the instantaneous

noise amplitude in the frequency domain is (due to the central

limit theorem) Gaussian as well [3].

Let N = [N0 · · ·NL−1]
T

be a complex valued noise se-

quence in the frequency domain, and n = [n0 · · ·nL−1]
T

(T denotes transposition) a complex-valued noise sequence
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in the time domain with M non-zero values randomly posi-

tioned within the L-sized frame.

The L-sized noise vector element in the frequency domain

is given by

Nm =
1√
L

L−1
∑

l=0

nl W
−lm
L , ∀m = {0, 1, · · · , L− 1} (1)

where WL = ej
2π
L , j =

√
−1, and letters l, m denote

discrete time and frequency indices, respectively.

Due to the symmetry of the Vandermonde matrix WL,

noise sample Nm depends on the impulse position symmetry

scenario in the time domain. Let s denote the impulse position

in the first half of the L-sized frame i.e. s =
{

0, · · · , L2
}

. Let

p denote the impulse position in the second half of the frame,

i.e. p =
{

L
2 + 1, · · · , L− 1

}

. Then the impulse positions s

and p form a symmetry pair when the condition s+ p = L is

satisfied.

Lemma 1: A symmetric impulse noise pair in the time do-

main produces noise squared norms Y
(f)
r and Y

(f)
i which are

central chi-squared RVs with two degrees of freedom each, in

the frequency domain, i.e. holds

Y (f)
r = n2

r,1 + n2
r,2; Y

(f)
i = n2

i,1 + n2
i,2 (2)

where nr,1, nr,2, ni,1, ni,2 are independent real/imaginary

Gaussian impulses in the time domain at positions s and

p = L− s.

In a special symmetry case s = 0 and p = L ≡ p = 0, or

s = L/2 and p = L/2, holds Y
(f)
r = 2n2

r, Y
(f)
i = 0.

Proof : The squared norm of the real noise part in the

frequency domain is

Y (f)
r = ‖Nr‖2 =

L−1
∑

m=0

N2
r,m (3)

With N = DFT {n} and N = [N0 · · ·NL−1]
T

we

write Nm = 1
√

L

∑L−1
l=0 nl exp(−j2πlm/L), and Nr,m =

Re {Nm} , Ni,m = Im {Nm}. Hence

Nr,m =
1√
L
×

×Re

{

L−1
∑

l=0

(nr,l + jni,l) [cos (2πlm/L) + j sin (2πlm/L)]

}

=
1√
L

L−1
∑

l=0

[nr,l cos (2πlm/L)− ni,l sin (2πlm/L)]

(4)

Let a symmetric impulse pair occupy positions s and

p=L-s. Then

Nr,m = 1
√

L
[nr,s cos (2πsm/L)− ni,s sin (2πsm/L)] +

1
√

L
[nr,p cos (2πpm/L)− ni,k sin (2πpm/L)]

Since cos [2π (L− s)m/L] = cos (2πsm/L), sin [2π (L− s)m/L
− sin (2πsm/L), follows

Nr,m =
1√
L
×

× [(nr,s + nr,p) cos (2πsm/L)− (ni,s − ni,p) sin (2πsm/L)]

(5)

Given Nr,m by (5), the squared norm (3) is

Y
(f)
r =

∑L−1
m=0 N

2
r,m = 1

L

∑L−1
m=0

[(nr,s + nr,p) cos (2πsm/L)− (ni,s − ni,p) sin (2πsm/L)]
2

Through elementary calculation, follows

Y
(f)
r = 1

2 (nr,s + nr,p)
2 + 1

2 (ni,s − ni,p)
2

Due to the impulse noise independence, we can write

Y
(f)
r = n2

r,1 + n2
r,2; and similarly Y

(f)
i = n2

i,1 + n2
i,2.

In a special symmetry case when s = 0, or s = L/2, from

(5) follows Y
(f)
r = n2

r, and Y
(f)
i = 0.

This concludes the proof of Lemma 1.

Lemma 2: Noise impulse at position l (l 6= 0, l 6= L/2) in

the time domain which has not its symmetric pair produces

the noise squared norms Y
(f)
r and Y

(f)
i which are the central

chi-squared RVs each with two degrees of freedom, in the

frequency domain, and holds

Y (f)
r =

1

2

(

n2
r,l + n2

i,l

)

; Y
(f)
i =

1

2

(

n2
r,l + n2

i,l

)

(6)

Proof : Let the noise impulse appear at position l

(l 6= 0, l 6= L/2). Then from (4) follows

Nr,m = [nr,l cos (2πlm/L)− ni,l sin (2πlm/L)] . (7)

Given Nr,m in (7), the squared norm (6) is

Y (f)
r =

L−1
∑

m=0

N2
r,m =

=
1

L

L−1
∑

m=0

[nr,l cos (2πlm/L)− ni,l sin (2πlm/L)]
2

(8)

Through elementary calculation we obtain Y
(f)
i = (n2

r,l+

n2
i,l)/2.

This concludes the proof of Lemma 2.

Theorem 1: When M randomly positioned noise impulses

interfere L-sized OFDM signal, the impulse noise squared

norm density in the frequency domain p
Y

(f)
r,k

(y) is defined by

the scaled mixture as

p
Y

(f)
r

(y) =

M
∑

k=0

pK(k) p
Y

(f)
r,k

(y) (9)
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where

Y (f)
r =

M−k
∑

l=0

n2
r,l +

1

2

2k
∑

m=0

n2
i,m (10)

and k denotes the impulse noise symmetry scenario.

Proof : Let k denote the number of impulses without cor-

responding symmetric impulse pairs. As it is shown, when

M randomly positioned impulses appear within the L-sized

frame, M+1 impulse symmetry scenarios are possible. The

impulse squared norm related to the each scenario is defined

as follows:

k=0: there are no unpaired impulses (all impulses are

paired). Given (2), the noise squared norm is Y
(f)
r,0 =

∑M
l=1 n

2
r,l,

k=1: one impulse is not paired. Given (2) and (6), the

noise squared norm is Y
(f)
r,1 =

∑M−1
j=1 n2

r,j +
1
2

∑2
l=1 n

2
r,l,

k=2: two impulses are not paired. Given (2) and (6), the

noise squared norm is Y
(f)
r,2 =

∑M−2
j=1 n2

r,j +
1
2

∑4
l=1 n

2
r,l,

and so on. Finally

k=M-1: only one impulse is paired. Given (2) and (6), the

noise squared norm is Y
(f)
r,M−1 = n2

r,1 +
1
2

∑2M−2
l=1 n2

r,l,

k=M: no paired impulses. Given (6), the noise squared

norm is Y
(f)
r,M = 1

2

∑2M
l=1 n

2
r,l,

Since impulses are independent, the total squared norm is

superposition of the each. Therefore, holds

Y
(f)
r,k =

M−k
∑

j=1

n2
r,j +

1

2

2k
∑

l=1

n2
i,l (11)

Let the impulse noise symmetry scenario k appear with a

probability pK(k), k = 0, 1, · · · ,M . Then the total impulse

noise squared norm density is

p
Y

(f)
r

(y) =
M
∑

k=0

pK(k) p
Y

(f)
r,k

(y) (12)

which is identical to (9). Expression for pK(k) is derived in

Section III.

This concludes the proof of Theorem 1.

Sumands in (11) are independent chi-square RVs with

M − k and 2k deegres of freedom (DOD), respectively. Let

pZ1(z) and pZ2(z) denote their densities, then the PDF of the

kth noise squared norm p
Y

(f)
k

(y) can be expressed by

p
Y

(f)
k

(y) = pZ1(z) ∗ pZ2(z) (13)

where ∗ denotes convolution.

In a general scenario when an independent background

white noise w ∼ CN (0, σ2
w) is present, the noise can be

modelled as a combination of two impulse noises where one

is related to M randomly positioned impulses with variance

σ2
n + σ2

w, and the another one is related to “impulse” noise

which interferes the rest of L-M samples with variance σ2
w.

Let ul = nl + wl denote the impulse noise which affects M

positions, then similarly to derivation of (11), we can write

Y
(f)
r,k =

M−k
∑

j=1

u2
r,j +

L−M−k
∑

l = 1
l 6= j

w2
r,l +

1

2

2k
∑

m = 1
m 6= j, l

(u + w)2i,m

(14)

As discussed in relation to (11), summands in (14) are

independent chi-square RVs with M − k, L − M − k and

2k DOD, respectively. Let pZ1(z), pZ1(z) and pZ3(z) denote

their densities, then the PDF of the kth noise squared norm

p
Y

(f)
k

(y) can be expressed by

p
Y

(f)
k

(y) = pZ1(z) ∗ pZ2(z) ∗ pZ3(z). (15)

3. DISTRIBUTION OF THE SCENARIO K

The total number of M-sized complexions within the L-sized

frame is

L0 = C
(M)
L =

L!

M !(L−M)!
=

1

M !

M−1
∏

j=0

(L − j) (16)

The number of complexions that generate Y
(f)
r,k and

Y
(f)
i,k at k = 0, 1, · · · ,M depends on the triplet {L,M,k}.

Let wk(L,M) denote a number of complexions at k. We can

write

wk(L,M) = Lk(L,M) fk(L,M) (17)

where Lk(L,M) denotes the number of complexions

which occur at the maximum number of impulses sk that oc-

cupy the first N/2 positions within the L-sized OFDM frame,

and fk(L,M)is the related multiplication factor.

The maximum number of impulses sk that occupy the first

N/2 positions is

sk = M+k
2 , for M odd, k odd or M even, k even

sk =
M + k + 1

2
, for M odd, k even or M even, k odd.

(18)

Within each complexion, one among sk impulses occu-

pies one (fixed) position within the first L/2 positions. There-

fore, a number of complexions Lk(L,M) that occur with

sk − 1 impulses within L/2− 1 positions is

Lk(L,M) = C
(sk−1)
L/2−1 =

(L
2 −1)!

(sk−1)! (L
2 −sk)!

=

=
(L

2 −1)!
(M+k−2

2 )! (L−M−k
2 )!

,
for M odd, k odd

or
M even, k even

Lk(L,M) = C
(sk−1)
L/2−1 =

(L
2 −1)!

(sk−1)! (L
2 −sk)!

=

=
(L

2 −1)!
(M+k−1

2 )! (L−M−k−1
2 )!

,
for M odd, k even

or
M even, k odd

(19)
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Factor fk(L,M) is clearly determined by the binomial co-

efficients C
(b)
a (odd and even diagonals of the Pascal triangle)

as

fk(L,M) = 2k

k

(

L
2 − k

)

C
(L−k)/2
(M+k−2)/2 =

=
2k(L

2 −k)(M+k−2
2 )!

k! (M−k
2 )!

,
for M odd, k odd

or
M even, k even

fk(L,M) = 2k+1 C
(M−k−1)/2
(M+k−1)/2 =

=
2k+1(M+k−1

2 )!
k! (M−k−1

2 )!
,

for M odd, k even
or

M even, k odd

(20)

Given (19) and (20) we obtain (17). Then the total number

of complexions is

L0 =

M
∑

k=0

wk(L,M) =
L!

M !(L−M)!

which, as expected, equals to (16).

Let us define the PDF of the index random variable K as

pK(k) = wk(L,M)/L0. (21)

Substituting (16) and (??) into (21) it follows

pK(k) =
2kM !(L−M)!

(

L
2 − 1

)

!
(

L
2 − k

)

k!L!
(

M−k
2

)

!
(

L−M−k
2

)

!
,

forM odd, k odd
or

M even, k even

pK(k) =
2k+1M !(L−M)!

(

L
2 − 1

)

!

k!L!
(

M−k−1
2

)

!
(

L−M−k−1
2

)

!
.

forM odd, k even
or

M even, k odd

(22)

Expression (22) represents the exact closed-form formula

for calculation the PDF of the index RV k which describes

probability of the kth position scenario for M randomly posi-

tioned impulses in the L-sized frame.

Note that the discrete distribution pK(k) given by (22) is

the same for M and L-M. Thus, if M>L/2, it is enough to

calculate pK(k) for k = 0, 1, · · · ,M . This result also applies

in a general scenario “impulse noise plus background noise”

(see Eq. (14)).

4. NUMERICAL AND SIMULATION RESULTS

The i.i.d. Gaussian impulse noise has been generated by a

standard i.i.d. Gaussian noise source with variance σ2
n = 1

masked by an L-sized vector of randomly positioned M ones

and the rest of L − M zeros. In a scenario ”impulse noise

plus background white noise” the white noise Gaussian sam-

ples are drawn from an additional i.i.d. Gaussian source with

variance σ2
w = γσ2

n.

Fig. 1 shows the distribution of the noise squared norm

calculated from Eq. (12) for L = 16, M = 5 and γ =
0, 0.2, 0.5, 1. For γ = 0 the mixture component distribu-

tions for k = 0, 1, 2, 3, 4, 5 calculated from Eq. (13) are also

0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

squared norm y

P
D

F

−−o−− simulation
−−−−− model

γ=1

γ=0.5

γ=0.2

γ=0

k=0,1,2,3,4,5

Fig. 1. Distribution of the noise squared norm for L = 16,

M = 5 and γ = 0, 0.2, 0.5, 1 (Eq. (12) ). For γ = 0 the

mixture component distributions for k = 0, 1, 2, 3, 4, 5 (Eq.

(13) ) are also shown.

shown. The presented simulation results are obtained from

105 tests. It is obvious that the total noise squared norm den-

sities given by Eq. (12) (thick red lines) accurately describe

the results obtained by Monte Carlo simulations.

Let us consider the distribution of the mixture scaling fac-

tor K (22) for L = 8, 16, 32, 64, 128, 256, M = 5. Clearly,

the largest scale factor depends on the frame size L. So for

L = 8 the largest scale factor amounts to about 0.42 at k = 2,

for L = 16 the largest scale factor amounts to about 0.32 at

k = 3, and for L = 32 it amounts to about 0.47 at k = M =
5. As L increases to 64, 128 and 256 the largest scale factor

appears always at k = M and increases to about 0.72, 0.85

and 0.93, respectively. As frame size increases to infinity the

largest scale factor approaches 1. Hence, for the large frame

size (L > 512), the noise squared norm PDF can be aproxi-

mated by a chi-square PDF with 2M DOD at half the noise

variance.

5. CONCLUSION

In this paper we have developed exact analytical expressions

for the noise squared norm density in the frequency domain

for OFDM affected by M randomly positioned Gaussian im-

pulses within the L-sized frame. The derived formulas can be

exploited for accurate evaluation of the OFDM performance

related to distribution of errors per frame and the frame error

rate even when the number of noise impulses and frame size

are low. By using the noise squared norm density we over-

come the problem of the error correlation within the frame in

cases when the standard approach based on the assumption on

the Binomial error distribution does not hold.
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