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ABSTRACT 

Probabilistic linear discriminant analysis (PLDA) has shown to be 
effective for modeling speaker and channel variability in the i-
vector space for text-independent speaker verification. This paper 
shows that the PLDA scoring function could be formulated as 
model comparison between an adapted PLDA model and the 
universal PLDA. Based on this formulation, we show that a more 
robust adaptation could be attained by adapting the PLDA model 
through the use of minimum divergence estimate of speaker prior 
in the latent subspace. Experimental results on NIST SRE’10 and 
SRE’12 dataset confirm that the proposed method is effective in 
handling multi-session task. Notably, it is free from the covariance 
shrinkage problem typically found in the standard multi-session 
PLDA scoring. 

Index Terms— multi-session speaker verification, PLDA scoring, 
speaker adaptation, minimum divergence 

1. INTRODUCTION 

Over the past few years, many approaches based on the Gaussian 
mixture model (GMM) in a GMM-UBM framework [1, 2] have 
been proposed to improve the performance of text-independent 
speaker verification system [3, 4]. Based upon the GMM 
supervector [5], the i-vector was proposed in [6] and soon became 
the mainstream front-end for speaker verification and spoken 
language recognition alike [7]. Similar to a GMM supervector, an 
i-vector is a fixed-length representation of a speech utterance, 
which is typically of variable length. Besides, an i-vector offers a 
much lower dimensionality than that of the GMM supervector. 
This allows channel compensation techniques, for instance, within-
class covariance normalization [8], linear discriminant analysis 
(LDA) [9], and notably, probabilistic LDA (PLDA) [10] to be 
applied effectively with the low dimensional i-vectors. 

With PLDA, a commonly used scoring method is based on the 
likelihood-ratio test between two hypotheses – whether the 
enrollment and test utterances are from the same or different 
speakers [11]. This leads to a symmetric scoring function whereby 
the roles of the enrollment and test utterances are interchangeable 
as far as the detection score is concerned. In this paper, we show 
that such PLDA scoring paradigm could be formulated in 
equivalent form as model comparison between an adapted and the 
universal PLDA models, much similar to the speaker adaptation in 

the classical GMM-UBM paradigm [1]. This new interpretation 
gives rise to the use of minimum divergence estimation for speaker 
adaptation proposed in this paper. For easier understanding, we 
illustrate the two scoring methods visually with probabilistic 
graphical model [9]. 

It is customary to assume that only one i-vector is available per 
speaker during enrolment. In this paper, we consider a more 
general setting, as in the recent NIST SRE’12 [12, 13], whereby 
multiple i-vectors are available for enrollment. Following the 
method as briefly described earlier (more details in Section 3), 
these i-vectors are used to adapt the universal PLDA to a speaker-
specific PLDA model through a latent variable in the speaker 
space. One subtle problem with this procedure is the shrinkage of 
the posterior covariance when large numbers of enrollment i-
vectors are available pre speaker. This is particularly problematic 
when the i-vectors are highly correlated as they might be extracted 
from simultaneous multi-channel recordings, shorter duration cuts 
or exact replicas of other utterances. In this paper, we propose the 
use of minimum divergence [14] to address this problem. We show 
that minimum divergence estimation leads to a simple procedure of 
taking the empirical mean and covariance in the speaker space. The 
covariance matrix estimated in this manner is always lower 
bounded by a fixed value determined by the loading matrices of the 
PLDA.   

The rest of this paper is organized as follows. Section 2 
provides a brief review of i-vector and PLDA. In Section 3, we 
show, for the general case of multi-session, that PLDA scoring 
could be interpreted as model comparison between an adapted and 
the universal PLDA models. We then look into the problem of 
covariance shrinkage and address this issue with the help of 
minimum divergence estimation. Section 5 presents some 
experiment results. Finally, Section 6 concludes the paper. 

2. I-VECTOR AND PLDA 

2.1. I-vector extraction 

The central idea of i-vector extraction is to find a fixed length, and 
usually reduced dimension, representation of a variable-length 
speech utterance [6]. The fundamental assumption is that the 
feature vector sequence is generated by a session-specific GMM. 
Let r be the session index, the mean supervector rm  of the GMM 
is constrained to lie in the subspace with origin m , as follows 
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 r r m m Tw . (1) 

The low-rank matrix T , referred to as the total variability matrix, 
contains both speaker and channel variabilities. An i-vector is then 
taken as the posterior mean  |r r rE  w   of the latent variable 
wr representing both the speaker and channel information of a 
speech utterance r . 

2.2. Probabilistic LDA 

In PLDA, the contribution of speaker and channel effects on an i-
vector is teased apart by introducing separate subspaces. Let ,s r  
be an i-vector extracted from the r-th session of the speaker s. We 
assume that ,s r  is generated from a linear Gaussian model as 
follows: 

    , , , ,| , | ,s r s s r s r s s rp    h x μ Fh Gx Σ . (2) 

The modeling capability of PLDA relies on the latent variables sh  
and ,s rx , referred to as the speaker and channel factors, 
respectively. The vector μ  denotes the global mean of all i-
vectors, F and G are the speaker and channel loading matrices, 
respectively, while the covariance matrix Σ  models the remaining 
variability not accounted for by the loading matrices. This could be 
seen more clearly by examining the marginal density 

    T T| ,p    μ FF GG Σ . (3) 

To arrive at (3), the latent variables sh  and ,s rx  are integrated out, 
assuming a standard normal prior for both variables. We refer to 
the set  PLDA , , ,  μ F G Σ  as the parameters of the PLDA model, 
which could be determined by fitting the model onto a given set of 
training data using the expectation maximization (EM) algorithm 
[9]. Details about training procedure used in this paper can be 
found in [15, 16]. It is worth mentioning that a PLDA model, as 
shown in (3), is essentially a Gaussian distribution with a 
structured covariance matrix in the i-vector space. 

3. MULTI-SESSION PLDA SCORING 

3.1. Likelihood-ratio test 

Consider a speaker verification task, where each target speaker has 
multiple training utterances. Let  , 1

R

s r r



 be the set of i-vectors 

extracted from these training utterances. The task is to determine 
whether the set of training i-vectors  , 1

R

s r r



 and a given test i-

vector t  are from the same target speaker or not. This question 
gives rise to the following hypotheses: 
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The likelihoods of the two hypotheses can be evaluated using the 
models as shown in Fig. 1. More specifically, we compute their 
log-likelihood ratio, as follows 
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where each of the likelihood terms in the numerator and 
denominator is evaluated using (3). This is commonly referred to 
as the by-the-book multi-session PLDA scoring in the community.  

3.2. Speaker model adaptation 

One key signature of the PLDA scoring function in (4) is that no 
speaker model is involved. Detection scores are computed by 
comparing the training and test i-vectors through the use of the 
PLDA model in (3). In [17], it was shown that some redundant 
computation could be avoided, especially when multiple i-vectors 
are available for enrollment, by replacing  t , 1,...,, s r Rp     in the 
numerator with    t , 1,..., , 1,...,s r R s r Rp p    , which leads to     

    
 
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t 1,...,
t

, log
s r R

r R

p
l

p

 
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The numerator in (5) is now given by 

    1 T T
t , 1,..., t ,s r R s sp    

    μ Fm FL F GG Σ . (6) 

Here, sm  and 1
s
L  are the posterior mean and covariance of the 

latent speaker factor  1~ | ,s s s
h h m L  estimated using the set 

of training i-vectors of speaker s, as follows: 

    11 T T
,

1

R

s s s r
r






   m L F GG Σ μ , (7) 

  
111 T T

s R
      

L I F GG Σ F . (8) 

Notice that the number of training sessions, R, could be different 
among speakers. For instance, R could be up to 100 in the context 
of NIST SRE’12. 
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Figure1: Graphical model illustrating the two hypotheses of the 
likelihood-ratio test. 
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Figure 2: Graphical model illustrating the model adaptation 
scoring approach. 
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The scoring functions in (4) and (5) are mathematically 
equivalent. Nonetheless, they provide different perspectives from 
which we could view a speaker detection task. Notably, the 
formulation in (5) brings in the notion of speaker model adaptation 
which is absent in (4). More specifically, (6) can be seen as the 
PLDA model adapted to a target speaker using the given set of 
training i-vectors. Comparing (6) to (3), sμ Fm  and 

1 T T
s
  FL F GG Σ  are the adapted mean vector and covariance 

matrix of the speaker-dependent PLDA model. The expression in 
(5) can then be interpreted as the log-likelihood ratio between the 
speaker-dependent PLDA model in (6) and the universal PLDA 
model in (3), in a way much similar to the idea of the universal 
background model (UBM) [1]. The major difference is that the 
PLDA model is adapted through a latent variable sh  in the current 
case. Figure 2 illustrates this idea in the form of graphical model.  

4. MINIMUM DIVERGENCE ESTIMATION OF SPEAKER 
PRIOR  

To adapt a PLDA model to a target speaker, we first estimate the 
posterior mean sm  and covariance 1

s
L  using (7) and (8), and 

substitute the results into (6). Clearly, the estimation of the first 
and second moments of the posterior distribution constitutes an 
important part of speaker adaptation. One major problem with the 
posterior estimation in (8) is the shrinkage of the posterior 
covariance 1

s
L  for large R which in turn affects the estimation of 

sm  in (7). This is particularly problematic when the training 
utterances are highly correlated, for instance, simultaneous multi-
channel recordings, shorter duration cuts or exact replicas of other 
utterances. In the following, we advocate the use of minimum 
divergence [14] to address this problem. 

4.1 Minimum divergence estimation 

Consider the case where individual speaker has R enrollment 
utterances. We extract one i-vector ,s r  from each of these 
utterances. For each of the i-vectors, we compute the posterior 
distribution on the latent variable h as follows 

    1
, ,| | ,s r s rp  h h m L , for 1,2, ,r R  , (9) 

where 

    11 T T
, ,s r s r

  m L F GG Σ μ  and (10) 

  
111 T T
      

L I F GG Σ F  (11) 

are the posterior mean and covariance, respectively. Given (9), we 
seek for another Gaussian distribution  MDh  that best 
represents the R posterior distributions. Let  1MD ,s s  y P  be its 
mean and covariance, the parameters could be obtained by 
minimizing the Kullback-Leibler (KL) divergence [9] of 

 MDh  from the R posteriors  ,| s rp h , defined as follows 
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


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where the expectation is taken with respect to  1
,| ,s r

h m L . 

Notice that (12) is a sum of R KL divergence measures between 
normal distributions, the solution of which is given by [18]: 

    1
MD

1
tr log

2 2s s

R
D R K          L S P P . (13) 

Here, K is constant for a given dataset, while S is data dependent: 

   , ,
1

1 R

s r s s r s
rR 

   
T

S m y m y . (14) 

We solve for  1MD ,s s  y P  by differentiating (13) with respect 
to sy  and sP , separately, and set the derivatives to zero. In 
particular, the minimum divergence estimates could be expressed 
in closed form, as follows 

 ,
1

1 R

s s r
rR 

 y m , (15) 

 1 1
s
  P L S . (16) 

Different from that in (7) and (8), we estimate R number of 
posteriors instead of one and find the set of parameters 

 1MD ,s s  y P  that best describes the posteriors with minimum 
KL divergence. Notice that,  1,s s

y P  can be seen as empirical 
estimate of mean and covariance of the speaker factor h  in the 
subspace spanned by the eigenvoice matrix F.        

4.2 Speaker adaptation  

From the Bayesian perspective,  1,s s
h y P  can be seen as the 

adapted prior of the speaker factor h  from a non-informative one. 
Using  1,s s

h y P  in place of the multi-session posterior 

 1,s s
h m L , we have the adapted PLDA model for speaker s, as 

follows 

    1 T T
t , 1,..., MD t, ,s r R s sp     

    μ Fy FP F GG Σ . (17) 

It can be seen that, for the case when R = 1, 1
s
P  reduces to 1L  

while sy  falls back to sm , which makes the speaker model 
adaptation in (17) exactly identical to that in (6).  

Comparing (16) to (8), the covariance estimate 1
s
P  consists of 

two parts – the posterior component 1L  and an empirical 
component S . Both of them are free from the shrinkage problem as 
what will happen to 1

s
L  in (8) when large numbers of enrollment 

sessions are available for a particular speaker. More specifically, 
1L  in (11) is independent of R, while S in (14) reflects the 

empirical covariance of i-vectors in the speaker space. For the case 
when all i-vectors (or enrollment sessions) are identical, S becomes 
0, and 1

s
P  takes the minimum value of 1L . Using (10) in (15), we 

arrive at 

   11 T T
,

1

1 R

s s r
rR






    
 
y L F GG Σ μ . (18) 

Note that the empirical mean sy  in the speaker subspace 
corresponds to the empirical mean ,1

R

s rr
R

  in the original i-
vector space. As such, the proposed solution is similar to the 
conventional method in estimating sy , except for that it has an 
additional empirical component S in the covariance estimate.              
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5. EXPERIMENTS 

Experiments were carried out on the NIST SRE’10 and SRE’12 
datasets. For SRE’12, we focus on the Common Condition 2 of the 
core task where individual target speakers have one to over a 
hundred utterances for enrollment. For SRE’10, we focus on the 
Common Condition 5 of the 8conv-core task where each target 
speaker has eight utterances for enrollment. The performance was 
evaluated based on the equal-error-rate (EER) and the detection 
cost function (DCF) defined as      DET tar miss tar fa1C P P P P    . 
We consider the minimum DCF at two different operation points, 
namely, DCF10 and DCF12. The probability of target, tarP , is set 
to 0.001 and 0.01 for DCF10 and DCF12, respectively. The 
minimum DCF is found by sliding the threshold   for different 
value miss and false alarm probabilities denoted as  missP   and 

 faP  , respectively.   
We used gender-dependent setup. The UBMs consisting of 512 

Gaussians (with full covariance matrices) were trained with NIST 
SRE’04 dataset. The acoustic features were 57-dimensional vectors 
of mel frequency cepstral coefficents (MFCC) with first and second 
derivatives appended. The total variability space, with a dimension 
of 400, was trained with the telephone data from NIST SRE’04, 05 
and 06. For PLDA, the channel variability is modeled with two 
channel matrices, Gtel and Gmic, trained in a decoupled manner 
[19]. The rank of channel loading matrices G = [Gtel, Gmic] is set to 
100, while the rank of speaker loading matrix F is 200. 

We compared the performances of three approaches for speaker 
model adaptation:  

i. By-the-book approach using the model defined in (6), (7), 
and (8); 

ii. Minimum divergence (MinDiv) adaptation using the model 
defined in (15), (16), and (17); 

iii. Minimum divergence adaptation without the empirical 
covariance S in (16). We refer to this method as Mean only.   

It is worth mentioning that by dropping the empirical component S 
in (16), the minimum divergence approach reduces to the 
conventional solution of taking the average of i-vectors prior to 
PLDA scoring. This simple approach has been shown effective for 
multi-session scoring in many studies [12, 13, 20]. As such, it is 
our objective to see if the empirical covariance S would improve 
the performance with a proper covariance modeling motivated 
from the minimum divergence estimation perspective.          

Table I and Table II show the performance of the three speaker 
adaptation approaches on SRE’10 and 12, respectively. Clearly, the 
by-the-book approach does not perform better than the other two 
approaches. The deficiency becomes much more significant in the 
SRE’12 core task where the number of enrollment sessions varies 
from one to over a hundred resulting in a much more intense 
covariance shrinkage than in SRE’10 where the number of 
enrollment sessions is fixed as eight. Comparing MinDiv to Mean 
only, results on SRE’12 show a clear benefit of including the 
empirical covariance S to the speaker model adaptation. However, 
this benefit is not significant on SRE’10. This may due to the fact 
that the enrollment utterances for a target speaker in SRE’12 
include highly correlated segments (they might even include exact 
replicas of other sessions). In the 8conv-core task of SRE’10, the 

enrollment sessions were carefully selected to make sure that each 
of them is unique. Above all, the proposed MinDiv approach is far 
better than the by-the-book approach while the advantage over the 
Mean is marginal. For future work, further analysis on the use of 
the empirical covariance in the latent space will be conducted. 

6. CONCLUSION 

This paper presented an initial work on solving the multi-session 
PLDA scoring from the perspective of model adaptation. We 
showed that the PLDA scoring function could be formulated as 
model comparison between the speaker-dependent PLDA model 
and the universal PLDA, much similar to the classical GMM-
UBM. Based on this formulation, we propose a speaker adaptation 
method through a minimum divergence estimate of speaker prior. 
Experimental results show that this speaker adaptation method is 
effective in handling multi-session task, especially, when large 
number of enrolment i-vectors is available. Notably, it is free from 
the covariance shrinkage problem typical to the standard by-the-
book multi-session PLDA scoring.        
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Table I: Comparison of three speaker adaptation approaches on 
CC 5 of NIST SRE’10 8conv-core task. 

 Male 

 EER (%) DCF10 DCF12 

By-the-book 0.8493 0.2476 0.1915 

Mean 0.5194 0.1667 0.1446 

MinDiv 0.7607 0.1905 0.1623 

 Female 

 EER (%) DCF10 DCF12 

By-the-book 2.9370 0.3289 0.2625 

Mean 2.1379 0.3116 0.2546 

MinDiv 2.4747 0.3720 0.3142 

Table II: Comparison of three speaker adaptation approaches 
on CC 2 of NIST SRE’12 core task. 

 Male 

 EER (%) DCF10 DCF12 

By-the-book 6.8953 0.6015 0.5394 

Mean 3.9395 0.4765 0.4065 

MinDiv 3.5746 0.4238 0.3624 

 Female 

 EER (%) DCF10 DCF12 

By-the-book 6.4646 0.6338 0.5621 

Mean 3.2145 0.5382 0.4440 

MinDiv 3.0597 0.5235 0.4292 

4038



8. REFERENCES 

[1] D.A. Reynolds, T.F. Quatieri, and R.B. Dumn, “Speaker 
verification using adapted Gaussian mixture model,” Digital 
Signal Processing, vol. 10, no. 1-3, pp. 19-41, 2000.  

[2] T. Kinnunen and H. Li, “An overview of text-independent 
speaker recognition: from features to supervectors,” Speech 
Communication, vol. 52, no. 1, pp. 12-40, Jan. 2010. 

[3] P. Kenny, G. Boulianne and P. Dumouchel, “Joint factor 
analysis versus eigenchannels in speaker recognition,” IEEE 
Trans. Audio, Speech, and Language Processing, vol. 15, no. 
4, pp. 1435-1447, 2007. 

[4] P. Kenny, G. Boulianne, P. Ouellet and P. Dumouchel, 
“Speaker adaptation using an eigenphone basis.” IEEE Trans. 
Audio, Speech, and Language Processing, vol. 12, no. 6, pp. 
579-589, 2004. 

[5] P. Kenny, M. Mihoubi, and P. Dumouchel, “New MAP 
estimators for speaker recognition,” in Proc. the 8th European 
Conference on Speech Communication and Technology, 2003, 
pp. 2691-2964. 

[6] N.Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, 
“Front-end factor analysis for speaker verification,” IEEE 
Trans. Audio Speech and Language Processing, vol. 19, no. 4, 
pp. 788-798, May 2011. 

[7] H. Li, B. Ma, and K. A. Lee, “Spoken language recognition: 
from fundamentals to practice,” Proceedings of the IEEE, vol. 
101, no.5, pp. 1136 - 1159, May 2013. 

[8] A. Hatch, S. Kajarekar, and A. Stolcke, “Within-class 
covariance normalization for SVM-based speaker 
recognition,” in International Conference on Spoken 
Language Processing, Pittsburgh, PA, USA, September 2006. 

[9] C. M. Bishop, Pattern Recognition and Machine Learning. 
Springer, 2006. 

[10] S. J. D. Prince and J. H. Elder, “Probabilistic linear 
discriminant analysis for inferences about identity,” in Proc. 
International Conference on Computer Vision, 2007. 

[11] P. Kenny, “Bayesian speaker verification with heavy-tailed 
priors,” in Proc. Odyssey: Speaker and Language Recognition 
Workshop, Jun. 2010. 

[12] H. Li, B. Ma, K. A. Lee, C. H. You, H. Sun, and A. Larcher, 
“IIR system description for the NIST 2012 speaker 
recognition evaluation,” in NIST SRE'12 Workshop, Orlando, 
Dec. 2012. 

[13] N. Brümmer, A. Swart, L Burget, S. Cumani, O. Glembek, M. 
Karafiát, P.Matejka, O.Plchot, M. Soufifar, J. Silovský, P. 
Kenny, J. Alam, P. Dumouchel, P. Ouellet, M. Senoussaoui 
and T. Stafylakis, “ABC system description for NIST SRE 
2012,” in NIST SRE'12 Workshop, Orlando, Dec. 2012. 

[14] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, 
“A study of inter-speaker variability in speaker verification,” 
IEEE Transactions on Audio, Speech and Language 
Processing,  vol. 16, no. 5, pp. 980–988, July 2008. 

 

[15] Y. Jiang, K. A. Lee, Z. Tang, B. Ma, A. Larcher, and H. Li, 
“PLDA modeling in i-vector and supervector space for 
speaker verification,” in Proc. INTERSPEECH, 2012, paper 
198. 

[16] K. A. Lee, A. Larcher, C. H. You, B. Ma, and H. Li, “Multi-
session PLDA scoring of i-vector for partially open-set 
speaker detection,” in Proc. INTERSPEECH, 2013, pp. 3651-
3655. 

[17] P. Kenny, T. Stafylakis, P. Ouellet, M. J. Alam, and P. 
Dumouchel, “PLDA for speaker verification with utterance of 
arbitrary duration,” in Proc. IEEE ICASSP, 2013, pp. 7649 - 
7653. 

[18] N. Brummer, “EM for Probabilistic LDA,” Technical Report, 
Feb. 2010, Available at https://sites.google.com/site/nikobru 
mmer/. 

[19] M. Senoussaoui, P. Kenny, N. Dehak, P. Dumouchel, “An i-
vector extractor suitable for speaker recognition with both 
microphone and telephone speech,” in Proc. Odyssey: The 
Speaker and Language Recognition Workshop, 2010, pp. 28- 
3. 

[20] R. Saeidi, K. A. Lee, T. Kinnunen, T. Hasan, and et al, “I4U 
submission to NIST SRE 2012: A large-scale collaborative 
effort for noise-robust speaker verification,” in Proc. 
INTERSPEECH, 2013, pp. 1986–1990. 

4039



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


