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ABSTRACT 

 
Recently satisfactory results have been obtained in NIST speaker 

recognition evaluations. These results are mainly due to accurate 

modeling of a very large development dataset provided by LDC. 

However, for many realistic scenarios the use of this development 

dataset is limited due to a dataset mismatch. In such cases, 

collection of a large enough dataset is infeasible. In this work we 

analyze the sources of degradation for a particular setup in the 

context of an i-vector PLDA system and conclude that the main 

source for degradation is an i-vector dataset shift. As a remedy, we 

introduce inter dataset variability compensation (IDVC) to 

explicitly compensate for dataset shift in the i-vector space. This is 

done using the nuisance attribute projection (NAP) method. Using 

IDVC we managed to reduce error dramatically by more than 50% 

for the domain mismatch setup. 

   

Index Terms— speaker recognition, robust speaker 

recognition, i-vector, inter dataset variability compensation, 

domain adaptation challenge 

 

1. INTRODUCTION 

 
Recent advances in speaker recognition, namely the introduction of 

i-vectors [1] and Probabilistic Linear Discriminant Analysis 

(PLDA) [2, 3] resulted in very low error rates in the recent NIST 

speaker recognition evaluations (SREs) [3]. However, the success 

of i-vector based PLDA is dependent on the availability of a large 

development set with thousands of multi session speakers. 

Moreover, the development data must match the evaluation data.  

For domains that differ from the standard NIST SREs, the use 

of i-vector based PLDA is not so successful. For instance, for text-

dependent speaker recognition it has been shown that the NAP 

framework [4] was more successful [5], unless an unrealistically 

large text-dependent development dataset is available [6].  

In the summer of 2013, two speaker recognition workshops 

were concurrently held at the Johns Hopkins University (JHU) [12, 

13]. The cross domain speaker recognition task was addressed in 

both workshops and was named the domain adaptation challenge. 

The challenge was motivated by preliminary experiments that 

showed that a PLDA system built on the Switchboard [7] corpus 

gave a 3 times larger equal error rate (EER) on the NIST 2010 

SRE (condition 5), compared to a system built on a subset of the 

MIXER corpus (NIST 2004-2008 SREs).  

The work reported in this paper was done at the JHU workshop 

in the framework of the domain adaptation challenge. The main 

goal addressed in this paper was improving the accuracy of a 

system built on Switchboard and evaluated on NIST 2010 SRE, 

without any adaptation stage (using MIXER) whatsoever.  

The research challenge of coping with dataset mismatch is 

usually addressed using some amount of adaptation data [6, 8, 9]. 

In [10] source normalization (SN) was proposed to improve the 

robustness of i-vector-based speaker recognition for under-

resourced and unseen cross-source evaluation conditions. The 

technique of source-normalization aims at removing the effect of 

cross-dataset variation from the estimate of the between-speaker 

covariance matrix, and pushing it into the estimate of the within-

speaker covariance matrix.  This makes the recognition system 

more robust to dataset mismatch. Contrary to SN, we aim at 

explicitly modeling dataset variation in the i-vector space and 

compensating it as a pre-processing cleanup step. We empirically 

compare our method to SN in Section 4 and discuss the differences 

between our proposed method and SN.    

The rest of the paper is organized as follows: Section 2 

provides an overview of the experimental setup. Section 3 

motivates the proposed method and reviews related work. Section 

4 describes the proposed method. Finally, Section 5 concludes. 

 

2. EXPERIMENTAL SETUP 

 
We use the official JHU 2013 speaker recognition workshop 

experimental setup. Following is a description of the datasets used, 

the speaker recognition system baseline, and the experimental 

protocol. 

 

2.1. The SWB dataset 
 

The SWB dataset consists of all telephone calls taken from 

Switchboard-I and Switchboard-II (all phases) corpora. This 

dataset serves as the mismatched development dataset. The dataset 

consists of 3114 speakers and 33039 sessions. For score 

normalization 2000 male sessions and 2000 female sessions were 

randomly selected. 

 

2.2. The MIXER dataset 
 

The MIXER dataset consists of a subset of telephone calls taken 

from SREs 2004-2008. For SRE 2008 interview data only is 

selected. This dataset serves as the matched development dataset. 

The dataset consists of 3790 speakers and 36470 sessions. For 

score normalization 2000 male sessions and 2000 female sessions 

were randomly selected. 

 

2.3. The NIST-2010 dataset 
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The NIST 2010 SRE [11] condition 5 core extended trial list 

(single telephone conversations for both test and train with normal 

vocal effort) is used for evaluation. The dataset consists of 7169 

target trials and 408956 impostor trials. 

 

2.4. I-vector extractor 
 

The i-vectors used in this work were created by the organizers of 

the workshop for the common use of the participants. A detailed 

description of the i-vector extractor is given in [14]. The i-vector 

extractor uses 40-dimensional MFCCs (20 base + deltas) with 

short-time mean and variance normalization. It uses a 2048 

mixture gender independent (GI) UBM to obtain 600 dimensional 

GI i-vectors. The UBM and i-vector extractor were trained using 

the whole SWB dataset.  

 

2.5. I-vector centering 
 

A common technique for i-vector-based systems is to center the i-

vectors of given datasets to a common center. In our baseline 

system we compute the center of the development data and use it to 

center both the development and evaluation data (the use of the 

center of the evaluation data is allowed only in the adaptation 

setup).  

 

2.6. PLDA based back end 
 

Prior to PLDA modeling [3], the dimensionality of the i-vectors is 

reduced using GI-LDA to 400. The next steps are within class 

covariance normalization (WCCN) [3] and length normalization 

[3]. Standard gender-dependent (GD) PLDA is then used with full 

between and within covariance matrices. Finally, ZT-norm for 

score normalization (which we found to outperform S-norm) is 

optionally performed. 

 

2.7. The Domain robustness task 
 

In the domain robustness task SWB is used for system building 

and NIST-2010 is used for evaluation. No use of MIXER (not even 

for i-vector centering) is allowed whatsoever.  

 

2.8. The Domain unsupervised normalization task 
 

In the domain unsupervised normalization task, SWB is used for 

system building. Unlabeled MIXER is used for normalization, and 

NIST-2010 is used for evaluation. Contrary to the domain 

adaptation challenge in which the MIXER data is assumed to 

contain many multi-session speakers, no such assumption is made 

in the normalization task. The normalization step may be followed 

by a domain adaptation step (involving clustering of the data into 

speakers and retraining the PLDA system as done extensively by 

other JHU 2013 participants) but this is not in the scope of this 

paper. 

 

2.9. Evaluation measures 
 

We report results by pooling male and female trials. For the main 

contribution we also report separate male and female results. Three 

error measures are used: EER, minDCF (old) and minDCF (new) – 

as specified in [11]. 

 

3. MOTIVATION AND RELATED WORK 

 
Table 1 shows the degradation due to using the mismatched SWB 

dataset for building the PLDA system instead of using MIXER. 

EER increases by a factor of 3 (from 2.41% to 8.2%) and DCF 

increases very significantly too. Interestingly, when the i-vectors of 

the evaluation set (NIST 2010) are centered using the mean of the 

train set, EER drops from 8.2% to 4.58%. Furthermore, when the i-

vectors of the train and test set are centered using the center of 

each set correspondingly, EER goes down to 3.96%. The fact that 

EER is cut by 50% by just doing proper centering (though 

breaking the NIST protocol) motivates our IDVC approach. 

Table 1. A comparison of a system built on MIXER to 

systems built on SWB using different centering strategies. 

Results are for pooled male and female trials.   

Devset EER(in %) minDCF(old) minDCF(new) 

MIXER 2.41 0.119 0.374 

SWB 8.20 0.325 0.687 

SWB  
center using train set 

4.58 0.218 0.606 

SWB  
center using train/test sets 

3.96 0.189 0.546 

 
Note that the dataset shift observed in Table 1 is different than 

standard intra-speaker variability. Standard within-speaker 

variability is assumed to distribute normally and is a source of 

variability between enrollment (train) and verification (test) data. 

Dataset shift may distribute quite differently than normal (as seen 

in Figure 1 below), and many times is a source of variability 

between the development data and the evaluation data, but not a 

major source of variability between enrollment and verification 

data (as can be seen in Table 1). 

Note that the PLDA framework is much more vulnerable to 

dataset shift than the NAP framework. For instance, if both 

enrollment and verification sessions are shifted identically, the 

NAP framework is indifferent. However, in PLDA, length 

normalization and speaker space modeling (using the between 

speaker covariance matrix) are sensitive to dataset shift. 

Furthermore, dataset shift may not be represented properly in 

the development data (when mismatch between development and 

evaluation data is much stronger than the internal mismatch within 

the development data), so standard modeling techniques may need 

some manual intervention or tuning.  

Finally, contrary to standard within-speaker variability, dataset 

shift variability may be modeled without the need of a labeled 

multi-session multi-speaker dataset, as an unlabeled single-session 

multi-speaker dataset is enough to estimate dataset shift variability. 

The above analysis gives a general motivation why the standard 

PLDA framework and natural extensions such as source 

normalization [10] do not optimally cope with dataset shift. 

 

3.1. Source normalization  
 

SN is an extension of the standard PLDA training framework 

which does take into account the fact that the development data 

may originate from several different sources, each one represented 

by a different dataset shift. SN modifies the PLDA training 
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framework in such a way that cleans up the estimation of the 

between-speaker covariance matrix from dataset variability and 

pushes it to the scope of the within-speaker covariance matrix. This 

is indeed an improved mean of modeling dataset variability but 

lacks some of the required properties listed above. In Section 4 we 

provide experimental results for the SN method in comparison to 

the proposed IDVC method. 

 

3.2. Total variability subspace removal (TVSR) 
 

TVSR is a technique that estimates a low dimensional subspace 

representation of the total variability space and removes that 

subspace as a preprocessing step. 

TVSR was first proposed in [16] where it was named common 

speaker subspace removal. It was successfully used in [17, 8] for 

building a system with a development set consisting of single-

session speakers only. In the NAP framework, TVSR was found to 

be beneficial even when multi-session speakers are available, both 

for text-dependent speaker verification [5] and for speaker 

recognition in summed (two-wire) conversations [18] where it was 

named two-wire-NAP. 

The motivation for using TVSR is as follows:  the low 

dimensional (~15) total variability subspace may consist of sources 

of variability such as gender variability and dataset or channel 

variability that are not properly represented in the multi-session 

speaker development data. Removing these sources of variability 

may improve the correctness of the Gaussianity assumptions in 

PLDA in mismatched conditions.  

We investigated TVSR in the context of the domain adaptation 

challenge and found it to be beneficial. In Section 4 we provide 

experimental results for the TVSR method in comparison to the 

proposed IDVC method. 

 

4. INTER DATASET VARIABILITY 

COMPENSATION 

 
Inter dataset variability compensation aims at directly estimating 

and removing dataset shift in the i-vector domain. Dataset shift 

vectors are estimated for subsets of the development data 

(corresponding to different sources) and a low-dimensional 

subspace is estimated from these shift vectors. The estimated low-

subspace is then removed from all i-vectors as a pre-processing 

step before PLDA training and scoring. The method and 

experimental analysis are described in detail in the following 

subsections. 

 

4.1. Algorithm 
 

Given a development dataset (such as SWB), the dataset is split 

into subsets according to available metadata (in principle, 

automatic clustering may also be used). In this work SWB was 

divided into 12 subsets (6 per gender). The subsets were defined 

according to the different LDC distributions (Table 2). Similarly, 

MIXER was partitioned into 8 gender dependent (GD) subsets for 

SRE 2004, 2005, 2006 and 2008 (interview).  

For each subset all i-vectors are averaged and the resulting i-

vector is the center of the subset. Given the set of 12 centers for 

SWB, principal component analysis (PCA) is used to find a basis 

for the subspace spanned by the 12 centers. This subspace is 

named the inter dataset variability subspace, and is removed from 

all the i-vectors for both the development and the evaluation data 

as a pre-processing stage. Figure 1 shows the first four dimensions 

of the projected centers of the subsets of SWB, MIXER and NIST-

2010 in the dataset shift subspace. Note that the first eigenvector 

corresponds to gender. 

Table 2. SWB is partitioned into 6 subsets. Each subset is 

then partitioned into two GD subsets. 

Code Description 

97S62 SWB-1 Release 2 

98S75 SWB-2 Phase I 

99S79 SWB-2 Phase II 

2001S13 SWB Cellular Part 1  

2002S06 SWB-2 Phase III 

2004S07 SWB Cellular Part 2  

 

 

 
Figure 1: Projection of the subset-based centers of SWB, 

MIXER and the evaluation set on the first four 

eigenvectors of the estimated dataset shift subspace. 

 

4.2. Results 
 

Table 3 reports the results using IDVC for a PLDA system built on 

SWB only (named the domain robustness task). Results are 

without score normalization. We use the whole subspace spanned 

by the 12 centers for IDVC removal. We observe a 54% reduction 

in EER for pooled male and female trials. Note that the 

improvement for females (59%) is larger than for males (48%).  

For minDCF (old) cost reduction is 41% in average. For minDCF 
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(new), cost reduction is 22% in average. 

Table 4 reports our investigation of the use of IDVC when the 

unlabeled MIXER data is available for unsupervised 

normalization. We name this task as the domain unsupervised 

normalization task. We use the term normalization and not 

adaptation in order to emphasize the lack of an assumption that the 

MIXER data contains multi-session speakers and the lack of use of 

clustering techniques. We use the MIXER data jointly with SWB 

to estimate the IDVC subspace. We use the whole subspace 

spanned by the 20 centers (12 SWB + 8 MIXER) for IDVC 

removal. We also explore the possibility of using the MIXER data 

for score normalization (which was found in [15] to be beneficial 

for the domain adaptation challenge).  We observe that using 

MIXER jointly with SWB for IDVC estimation gives a small 

improvement. We also observe that score normalization gives a 

large improvement for the baseline system, but only small 

improvements (if any) in conjunction with IDVC. 

Next, we compare the IDVC method to other techniques in the 

framework of the domain robustness task (Table 5) and the 

framework of the domain unsupervised normalization task (Table 

6). Finally we report the results of using IDVC when training the 

system on the labeled MIXER. As can see in Table 7, IDVC 

slightly degrades performance for the matched domain task. 

 

Table 3. Results using IDVC with a PLDA system built on 

SWB (without score normalization). 

Eval dataset 
IDVC  

training dataset 

EER 

 (in %) 

minDCF 

(old) 

minDCF 

(new) 

All 
- 8.20 0.325 0.687 

SWB 3.75 0.192 0.533 

Males 
- 6.55 0.299 0.640 

SWB 3.43 0.165 0.462 

Females 
- 9.75 0.342 0.706 

SWB 4.00 0.210 0.581 

 

Table 4. Results on pooled male and female trials using 

IDVC with a PLDA system built on SWB. The use of 

MIXER for score normalization is explored. 

IDVC 

training dataset 

Score 

normalization 

EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

- 

- 

8.20 0.325 0.687 

SWB 3.75 0.192 0.533 

SWB+MIXER 3.48 0.169 0.520 

- 

MIXER 

5.87 0.227 0.715 

SWB 3.53 0.170 0.521 

SWB+MIXER 3.42 0.165 0.541 

 

Table 5. Results for the domain robustness task. IDVC 

outperforms all other methods. 

System 
EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

Baseline 8.20 0.325 0.687 

TVSR 7.42  0.301 0.669  

SN 5.33 0.254 0.640 

IDVC 3.75 0.192 0.533 

Table 6. Results for the domain unsupervised 

normalization task. IDVC outperforms all other methods. 

System 
EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

Baseline 8.20 0.325 0.687 

Centering and score 

normalization using 

MIXER 

5.84 0.223 0.631 

SN 4.73 0.206 0.581 

TVSR 4.05  0.176 0.549 

IDVC 3.48 0.169 0.520 

 

Table 7. Results on pooled male and female trials using 

IDVC on a PLDA system built on MIXER. 

IDVC 

training dataset 

EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

- 2.41 0.119 0.374 

SWB 2.45  0.122  0.403  

SWB+MIXER 2.60 0.125  0.395  

 

5. CONCLUSIONS 

 
The inter dataset variability compensation technique for speaker 

recognition (using i-vector PLDA) was introduced and analyzed in 

this study. The shortcomings of the standard i-vector PLDA 

algorithm for coping with dataset mismatch were illustrated. 

Contrary to standard within-speaker variability, dataset shift may 

be highly non-Gaussian. Furthermore, in many cases dataset shift 

is a source of variability between development and evaluation data 

but not between enrolment and verification data. 

IDVC has shown to effectively reduce the influence of dataset 

variability on the investigated i-vector PLDA system in the context 

of the domain adaptation challenge. When evaluated on a system 

trained on the Switchboard corpus, EER was decreased by 54%, 

DCF (old) by 41% and DCF (new) by 22%.  When unlabeled 

MIXER data is used for adaptation, some more gains are achieved. 

An unexplored additional use of the IDVC framework would 

be for robust data shift adaptation (centering) using a small amount 

of unlabeled adaptation data.  
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