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ABSTRACT

In this paper, we analyze the security of compressed sensing
(CS) as a cryptosystem. We demonstrate that random linear
measurements acquired using a Gaussian i.i.d. matrix reveal
only the energy of the sensed signal, and that only the energy
of the measurements leaks information about the signal. We
provide useful bounds for assessing the information leakage
about the energy, linking those bounds to the minimum mean
square error achievable by practical estimators. Moreover,
we propose a simple strategy based on the normalization of
the measurements which achieves, at least in theory, perfect
secrecy, enabling the use of CS-based encryption in practical
cryptosystems.

Index Terms— Compressed sensing, encryption, random
matrices, security.

1. INTRODUCTION

Compressed sensing (CS) has recently emerged as an effi-
cient framework for acquiring signals at a rate well below that
predicted by the classical Shannon-Nyquist theory [1, 2, 3].
The key intuition behind CS is that linear measurements of
a sparse or compressible signal enable signal recovery with
high probability, provided that the measurements satisfy cer-
tain incoherence properties. Interestingly, several results con-
firm that linear measurements acquired using random matri-
ces have indeed such properties [4, 5].

Right from the introduction of the CS paradigm, re-
searcher have hinted the possibility that acquiring signals
via random linear projection may provide some notion of
security. In [6], the authors argue that CS does not provide
information theoretic secrecy [7], while it can be viewed as
a cryptosystem offering computational secrecy. The security
of CS is also investigated in [8], where the authors conclude
that CS is computationally secure against a systematic search
of the sensing matrix, even if the degree of sparsity is known.
Other authors have found that CS can be employed to achieve
security in the wiretap channel model, i.e., if an eavesdrop-
per has access to a secret communication through a different
channel with respect to the intended receiver [9, 10].
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In this paper, following the approach of [6], we analyze
the security of CS as a cryptosystem. Differently from [6], we
demonstrate that random linear measurements acquired using
a Gaussian i.i.d. matrix can achieve secrecy in an information
theoretic sense under specific distributions of the sensed sig-
nal. Namely, we prove that a Gaussian sensing matrix reveals
only the energy of the sensed signal, and that only the energy
of the measurements leaks information about the signal. The
result is that CS using Gaussian random matrices is, at least
in theory, perfectly secure when sensing constant energy sig-
nals. Moreover, we propose a simple strategy based on the
normalization of the measurements which achieves, at least
in theory, perfect secrecy irrespective of the distribution of the
sensed signal. In the case of generic signals, we also provide
useful bounds for assessing the information leakage regarding
the energy of the sensed signals and we link such bounds to
the minimum mean square error achievable by practical esti-
mators. Simulation results are also included to validate such
bounds in a simple scenario.

2. BACKGROUND

2.1. Compressed Sensing

A signal x € R" is called k-sparse if there exists a basis ®
such that z = ®6 and 6 has at most & nonzero entries, i.e.,
[10]lo < k. According to the compressed sensing framework,
a k-sparse signal can be exactly recovered from m < n linear
measurements

y=Ax ey

by solving the minimization problem

0 = argmoin [16]l0, subjectto APH =y )

as long as m > 2k and the m x n sensing matrix A satisfies
certain properties [1, 2].

Recovering x from only m = 2k measurements is in gen-
eral a combinatorial problem. In practice, if the entries of
A are i.i.d. variables from a sub-Gaussian distribution, then
exact recovery of k-sparse signals can be achieved with very
high probability by solving the convex minimization problem

6= argmein [10]|1, subjectto APO =y 3)

as long as m = O(klog(n/k)) [4]. In the following, we will
focus on random sensing matrices A with i.i.d. entries.
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2.2. Security definitions

Let us call the set of possible plain texts P, the set of cipher
texts C and a key K. A private key cryptosystem is a pair of
functions ex : P — C,dx : C — P such that, given a plain
text p € P, di (ex(p)) = p and such that, given a cipher text
¢ € C, it is unfeasible to determine p such that ex (p) = ¢,
without knowing the key K.

A cryptosystem is perfectly secure [7] if the posterior
probability of the cipher text given the plain text p is indepen-
dent of p, i.e.,

P(clp) = P(c). O]

For a perfectly secure cryptosystem, any attack can not be
more successful than guessing the plain text at random.

Practical cryptosystems are usually computationally se-
cure, meaning that breaking the cryptosystem is equivalent
to solve a computationally hard problem, that is, a problem
whose solution can not be computed in polynomial time with
respect to the size of the key.

Given the CS model y = Az, we can define the follow-
ing equivalences between CS and a private key cryptosystem:
the signal x is the plain text, the sensing matrix A is the se-
cret key and the measurement vector y is the cipher text. The
encryption function is matrix multiplication, whereas decryp-
tion is achieved by solving the problem in (3). The notions of
perfect security and computational security can be extended
also to the cryptosystem defined by the CS framework.

2.3. Security Scenarios and Attack Models

The security of the CS-based cryptosystem will be affected
by the policies regarding the generation of the sensing ma-
trix in the case of multiple measurements. On the one hand,
using the same sensing matrix for multiple signals limits the
overhead due to the transmission of the sensing matrix. On
the other hand, generating a different and independent sens-
ing matrix for each measurement is somewhat analogous to a
one-time pad cryptosystem and may offer greater security.

In this paper, we will focus on the one-time sensing ma-
trix (OTS) scenario. We will assume that each sensing matrix
is used only once, and that different sensing matrices are sta-
tistically independent. Under this scenario, it is sufficient to
consider the security of y = Az, since measurements of mul-
tiple signals will be statistically independent.

The security of a cryptosystem depends also on the re-
sources of the adversary. In this paper, we will focus on a
ciphertext-only attack (COA) scenario where the adversary
has only knowledge of the measurements y.

3. SECURITY OF THE MEASUREMENTS

In this section, we summarize the main results of the paper.
Proofs are omitted due to space limitations. Let us consider
the OTS cryptosystem defined by y = Ax. Let us denote with

I(z,y) the mutual information between x and y [11], with
[A]; ; the (i, j) element of matrix A, and define &, = ||z||3.
We have the following important result:

Proposition 1. If [A]; ; are i.i.d. zero-mean Gaussian vari-
ables, then the OTS cryptosystem satisfies I (x;y) = I(E,; ).

As a proof sketch, we note that for a given x, y has a
multivariate Gaussian distribution whose covariance matrix
depends only on &,, hence P(y|x) = P(y|E,). The above
result says that an OTS cryptosystem using an i.i.d. Gaussian
sensing matrix does not reveal anything more about z than
what can be inferred by the knowledge of its energy. It is
worth noting that this is true irrespective of the sparsity degree
of z, that is, « does not have to be necessarily sparse. In the
following, we will denote such a cryptosystem as Gaussian-
OTS (G-OTS) cryptosystem. An immediate consequence of
the above proposition is that the G-OTS cryptosystem does
not reveal anything about a family of signals with a constant
energy.

Corollary 1. If Vz, £, = 8 > 0, then the G-OTS cryptosys-
tem is perfectly secure.

Moreover, let U, = x/+/E;. Then we have that under
some conditions U, is perfectly hidden.

Corollary 2. If U, and &, are statistically independent, then
the G-OTS cryptosystem satisfies I(U,;y) = 0.

Since for most signals of interest the constant energy re-
quirement is usually not verified, it is interesting to evaluate
the information leakage due to the observation of y. For the
case of i.i.d. Gaussian sensing matrices, we have the follow-
ing two results:

Proposition 2. Let &, = ||y||3. If [A]; ; are i.i.d. zero-mean
Gaussian variables, then we have I(x;y) = I1(€,; E,). More-
over, I(x;y) can be upper bounded as

Iaiy) <€) =€ () —v) +0 () ©
where &(k) £ K + log(T'(k)) + (1 — kK)Y(k), T'(k) =
Jot*"te~'dt is the Gamma function, ¢(k) = dlog(Tir))
is the digamma function, and s* is the solution to the non-
linear equation log(x*) — ¥(k*) = log(m/2) — ¥(m/2) +
log(E[&]) — Ellog(€x)].

As a proof sketch for the first part, we note that y follows
a spherically symmetric distribution around y = 0, hence &,
is independent of y/&,. The first result says that £, is a suffi-
cient statistic for estimating z, irrespective of the distribution
of x. The second part gives an upper bound on the amount of
information that y leaks about z. It is worth noting that the
upper bound in (5) does not depend on the variance of [A]; ;.

An interesting consequence of the above result is that it
can be exploited to obtain a perfectly “securized” version of
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the G-OTS cryptosystem. Let us modify the G-OTS cryp-
tosystem so that only normalized measurements are transmit-
ted, i.e, the ciphertext is given by U, = y//&,, and denote
it as SG-OTS.

Lemma 1. The SG-OTS cryptosystem is perfectly secure,
ie., P(Uy|z) =P(U,).

4. SECURITY BOUNDS

The standard cryptographic definition of security fails to cap-
ture the fact that an attacker may try to estimate x up to a
certain precision instead of recovering its exact value. Hence,
it may have sense to introduce an alternative notion of secu-
rity linked to the mean squared error (MSE) between x and
an estimate & obtained by observing only the measurements
. In the following, we will say that a cryptosystem is 77-MSE
secure with respect to z, if, for every possible estimator Z(y)
of z, we have

Elllz =23 o
W—%Zﬂ (6)

where C,, is the covariance matrix of = and tr() denotes the
trace operator. Note that a Bayesian estimator is always at
least 1-MSE secure, since in the absence of any a posteriori
information the minimum MSE (MMSE) estimator of x is
i(y) = El]. yielding E[||z — (y)||2] = tr(C.).

Let us consider an estimator Z(y) of  which relies on the
measurement y. By using rate-distortion theory [11], we can
link the mutual information between y and z to the MSE of
the estimator through the following lower bound

2h(z|y) 1 2r@)  20(zw)
e n -1 B n -1

Blllz 2@ 1 1
)

n 27 27

Since we know that a G-OTS cryptosystem reveals only
&, we can apply the definition of 7-MSE security to the es-
timation of &£,. Let us assume that z can be modeled as an
exactly k-sparse signal, whose nonzero entries are i.i.d. Gaus-
sian variables with zero mean and variance 03. In this case,
&, is distributed as a chi-square variable with & degrees of
freedom scaled by o2. The above fact, together with (7), leads
immediately to the following

Lemma 2. If x is an exactly k-sparse signal with i.i.d. Gaus-
sian nonzero entries, a G-OTS cryptosystem is at least n-MSE
secure with respect to £,, where

p26(5)+2¢'(5)—2¢' ()1
km

®)

n=

where &'(k) = &(k) — ¥(k) and k* satisfies log(k*) —
P(k*) = log(m/2) — ¢(m/2) +log(k/2) — ¢ (k/2).

4.1. Estimation Attacks

Lemma 2 gives a lower bound for the MSE of any possible
estimator of &, in the case of i.i.d. Gaussian sparse signals.
Such a bound can be compared with the performance of prac-
tical estimators.

The maximum likelihood (ML) estimator of &,, in the case
of a Gaussian sensing matrix is given by

. &
Ex = log(P(y|&)) = —%-. 9
= maxlog(P(y|és)) = 75 ©)
The performance of the ML estimator can be derived as
2
; = 2:; By taking the expectation over &,,, we readily
obtain E[(E, — c‘fLML)Z} = %(kmiml from which
k+2
Mg, ML = m (10)

For a Gaussian k-sparse signal, a closed form of the
MMSE estimator can be derived as
gy
402 02
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Ex ML = oA =
Y
Ki oy (2 7>

2 3
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(1)

where K, (x) denotes the modified Bessel function of the sec-
ond kind of order v. Unfortunately, there is no closed form for
the MSE of the above estimator. A simpler estimator can be
obtained by searching for the estimator minimizing the MSE
among all estimators which can be expressed as a linear func-
tion of £,. For a Gaussian k-sparse signal, this linear MMSE
(LMMSE) estimator is

4 £ k(k+2)o2

E, = Y N 12

LMMSE oi(m+k+2) m+k+2 (12)

The MSE can be evaluated as E[(€, — Epnvmse)?] =

. 4
% from which we obtain
k+2
Nég, LMMSE = m+k+2 (13)

The performance of the above estimators will be compared to
the theoretical bound in Section 6.

5. PRACTICAL IMPLEMENTATION

The implementation of either the G-OTS or the SG-OTS cryp-
tosystem will require to transmit a sequence of i.i.d. Gaussian
sensing matrices. A solution is to use a secure random number
generator (SRNG) [12] and assume that sender and receiver
synchronize their generators by sharing a secret seed. The
resulting cryptosystem is not perfectly secure, since a brute
force search of the key space will surely break the cryptosys-
tem [6]. Moreover, the attacker may exploit some weaknesses
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Fig. 1. MSE security of the G-OTS cryptosystem for different
number of measurements at p = k/m = 0.5.

of the SNRG in order to try to estimate the key, or the distri-
bution of the SRNG may slightly deviate from i.i.d. Gaussian.

As to the SG-OTS cryptosystem, an auxiliary secure chan-
nel to transmit the value of &, is required in order to ex-
actly recover z at the intended receiver. Such a secure chan-
nel can be implemented by relying on conventional crypto-
graphic techniques. As a consequence, the combination of
SG-OTS cryptosystem and auxiliary channel will not be per-
fectly secure, since practical cryptosystem, like AES, offer
only computational security. Nevertheless, we can conclude
that a practical implementation of the SG-OTS cryptosystem
is at least as secure as the standard cryptographic tools used to
encrypt the auxiliary channel and generate the sensing matri-
ces. This can offer a significant advantage with respect to full
encryption of the measurements, since we obtain basically the
same security level by performing only one encryption every
m measurements.

6. SIMULATION RESULTS

In this section, we evaluate the security of the G-OTS cryp-
tosystem for Gaussian k-sparse signals. For each experiment,
empirical MSE values for the ML, LMMSE, and MMSE es-
timators are obtained by averaging over 10° independent re-
alizations of the measurements for each choice of k£ and m.
In a first experiment, we consider a fixed overmeasuring
rate p = k/m = 0.5 and we vary k in the interval [1, 100].
The obtained empirical 7 values versus the number of mea-
surements m are shown in Fig. 1, together with the theoretical
performance of the ML and LMMSE estimator given in (10)
and (13), respectively, and the theoretical lower bound given
in (8). For a fixed p, the G-OTS cryptosystem tends to have a
constant MSE security as m grows, with the n value that does
not decrease significantly for m > 50. It is also worth noting
that the theoretical lower bound is quite loose for m < 50,

lower bound

— — — ML theoretical

121 : . + ML simulated

— - — - LMMSE theoretical
% LMMSE simulated

1 *  MMSE simulated

p=km

Fig. 2. MSE security of the G-OTS cryptosystem for different
overmeasuring rates: m = 100, k ranges form 1 to m.

but becomes relatively tight when m increases.

In a second experiment, we consider a fixed number of
measurements m = 100 and we vary & in the interval [1, 100],
obtaining different overmeasuring rates p in the interval [0, 1].
The obtained empirical i versus p are shown in Fig. 2, to-
gether with the theoretical performance of the estimators and
the theoretical lower bound. It is evident that the security of
the G-OTS cryptosystem decreases with p. It is also evident
that for values of p that are relevant to practical CS systems
all the estimators can estimate the energy of  with an MSE
lower than UET /10, which means that the measurements per-
mit to obtain a reasonable guess of £, even if the sensing
matrix is unknown.

7. CONCLUSIONS

The results obtained in this paper give interesting insights re-
garding the security of CS measurements. The first important
result is that a sensing matrix with zero mean i.i.d. Gaussian
entries reveals only the energy of the sensed signal. As a con-
sequence, the spherical angle of the signal is perfectly hidden
by the measurements if the energy and the angle are statis-
tically independent. Moreover, it is possible to upper bound
the information leakage about the energy and predict the pre-
cision with which the energy can be estimated.

The second important result in the paper is that for a
sensing matrix with zero mean i.i.d. Gaussian entries the
information leakage is confined to the energy of the measure-
ments. Based on the above property, a simple normalization
of the measurements yields a perfectly secure cryptosystem,
that can be used as a building block of a practical CS-based
cryptosystem offering the same security of standard crypto-
graphic tools at a reduced complexity.
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