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ABSTRACT

Steganographic security in empirical covers is best understood for
grayscale images. However, the world, and almost all digital images
of it, are more colorful. This paper extends the weighted stego-image
(WS) steganalysis method to detect stego images produced from cov-
ers that exhibit traces of color filter array (CFA) interpolation, which
is common for images acquired with digital cameras. The approach
combines techniques of CFA forensics with state-of-the-art WS ste-
ganalysis. Empirical results from large datasets indicate significant
increases in detection performance, in particular for small payloads.
This specific weakness of color covers calls into question the common
assumption that grayscale image steganography generalizes to color
images by treating each chroma channel independently.

Index Terms— Steganalysis, color filter array, image forensics

1. INTRODUCTION

A steganographic system is secure if stego objects are plausible; that
is, their distribution is indistinguishable by an adversary from the
distribution of cover objects transmitted on a channel. Most published
and almost all well-understood steganographic embedding functions
are only secure—if at all—against adversaries suffering from achro-
matopsia: they are designed for grayscale images only. Few things
demonstrate more impressively how detached steganography research
is from the real world [1]. Arguably, a scheme offering some security
for monochrome images can be generalized to color images by apply-
ing the same embedding function on each chrominance channel of an
image. Early implementations of embedding functions take this ap-
proach (e. g., F5 and OutGuess). However, the security implications
are not well understood and devastating surprises may loom.

This paper sets out to show that known steganalysis techniques
can be substantially improved by considering the provenance of color
information in suspect images. More specifically, we replace the
cover predictor in weighted stego-image (WS) steganalysis [2, 3] by
position-specific predictors to account for differences in the local pre-
dictability of pixels depending on their position in the color filter array
(CFA) interpolation. CFA interpolation leads to systematic and highly
variable predictability of cover pixels. It is virtually unavoidable
when acquiring plausible covers with commercial digital cameras
because CFAs are physical parts built into the optical system [4]. Our
simple and run-time neutral extension yields significant increases in
detectability, which translate to a security weakness whenever em-
bedding functions designed and evaluated for grayscale images are
naively generalized to color covers.

We are not aware of any other detector explicitly using color
information for this purpose. A proposal to count neighbors in the
color cube to detect additive noise steganography in RGB images [5]
later turned out to depend on artifacts of color subsampling in JPEG
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pre-compressed covers [6]. It can therefore be seen as a predecessor
of this work, even if not designed with this goal in mind.

As to the organization of this paper, Section 2 defines notational
conventions and recalls the essentials of WS steganalysis and CFA
interpolation. Section 3 combines the two to a more powerful detector,
which is then evaluated in Section 4. The final Section 5 concludes
with implications for future research.

2. PRELIMINARIES

2.1. Notation and Definitions

Boldface symbols denote vectors and matrices. We represent individ-
ual channels of a n-pixel RGB color image, x, as vectorized integer
intensity lattices, x = (x1, . . . , x3n) = (x{red},x{green},x{blue}) ∈
Z3n. If not stated otherwise, we omit the channel subscript and
examine color channels independently. Symbol x(p)

i denotes an in-
tensity value after steganographic embedding with net embedding
rate p ∈ [0, 1], i. e., x(0) is a cover image. We write F(x) to refer
to a linearly filtered version of intensity lattice x. Table 1 gives an
overview of filter masks we will employ throughout the paper. The
first five predict pixel values from their local spatial neighborhood.
FLS8 has the same purpose, yet instead of fixed coefficients, a and b
are found adaptively in a least squares (LS) procedure by minimizing
the L2 distance between a given image and predicted values. Filters
Fgreen and Fred will be useful to formalize green and red channel
bilinear CFA interpolation, respectively.

2.2. WS Steganalysis in a Nutshell

Fridrich and Goljan’s quantitative weighted stego-image (WS) ste-
ganalysis method [2] estimates the embedding rate p̂ of uniform least
significant bit (LSB) replacement embedding in (grayscale) intensity
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Fig. 1. Spatial neighborhood types in CFA-interpolated images; raw
(R), amidst four adjacent raw pixels (4N), four diagonal raw neighbors
(4D), two horizontal (2H) or vertical (2V) raw neighbors. The legend
symbols reappear as point marks in Figures 3 and 4.

images. In its most basic version, the estimator takes the form

p̂ =
2

n

n∑
i=1

(−1)x
(p)
i

(
x
(p)
i − x̂

(0)
i

)
. (1)

The first factor in the summation determines the sign of the pixel’s
contribution to the estimate based on its LSB. Vector x̂(0) is an
estimate of the cover pixel, obtained by linear filtering of the stego
image, x̂(0) = F(x(p)). Equation (1) is a consistent estimator of
the embedding rate p if x̂

(0)
i does not depend on x

(p)
i . Optional

local weights wi may be used to account for variation in the local
predictability of x(0)

i . The original WS proposal uses the mean of the
surrounding four stego pixels to predict the cover pixel, F = F4N.
Subsequent works have proposed filters of the form FKB8 or adaptive
filters FLS8 to steganalyze never-compressed grayscale images [3].

A convenient summary measure for the detection performance
is the absolute estimation error |p̂− p|, which can be averaged over
multiple covers to compute the mean absolute error (MAE) metric.
Lower values of MAE imply better detection performance. By this
measure, enhanced WS detectors are reported to be the most sensitive
targeted steganalyzers of LSB replacement steganography [3, 7].

2.3. CFA Interpolation in a Nutshell

Most digital cameras combine a single sensor with a color filter array
(CFA), i. e., individual sensor elements capture specific color informa-
tion only. A full-color image is obtained through interpolation from
surrounding samples of the raw signal in a so-called demosaicing
procedure [4]. The most common CFA layout is the family of Bayer
patterns [8], which implies that at least two thirds of all intensity
values in an RGB image are interpolated (cf. Fig. 1-a). Because of the
Bayer patterns’ periodic structure, this procedure is likely to leave lo-
cal correlation artifacts between pixels. Their presence, strength and
form can be measured particularly well in high-pass filtered versions
of the respective color channels [9, 10, 11]. Different combinations of
CFA layout and interpolation function yield different artifacts, which
gives rise to forensic image source identification algorithms [10, 11].
Tests for a consistent presence of CFA artifacts may expose image
manipulations [9, 12].

3. PROPOSED METHOD

To facilitate the following analyses, we make the simplifying (but
not limiting) assumption of plain bilinear CFA interpolation. The
respective green and red channel interpolation filters are given in
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Fig. 2. Impact of CFA neighborhood relations on estimated optimal
FLS8 filter coefficients (left) and RMS difference between image and
prediction (right). Box plots from 7,408 BOSSBase images after
bilinear green channel interpolation.

Tab. 1. The blue channel filter is equivalent to Fred, shifted by one
pixel horizontally and vertically.

3.1. Improved Local Predictions in CFA-Interpolated Covers

For bilinear interpolation, the specific form of CFA artifacts intuitively
follows from the different spatial neighborhood types of a Bayer
pattern (cf. Fig. 1). Specifically, there exist two classes of green color
channel pixels. Raw pixels, x{R}, are located at sites where the CFA
naturally has a green element. Interpolated pixels, x{4N}, have four
raw pixels as direct neighbors. Interpolation filter Fgreen dictates that
pixels of this type are equal to the mean of their non-interpolated
4-neighborhood (plus a rounding error ε),

(x−F4N(x)){4N} = ε . (2)

As for the red and blue color channels, we can distinguish between
three different types of interpolated pixels, namely x{2H}, x{2V },
and x{4D}. Strong neighborhood correlations, as in Eq. (2), are
obtained by inserting the appropriate filter kernels from Tab. 1. The
predictability of raw pixels is generally lower because they depend to
a larger extent on the image content.

Figure 2 exemplarily shows the impact of different CFA neigh-
borhood types on the predictability of pixels after green channel
Bayer pattern demosaicing of 7,408 BOSSBase images1 [13]. The
box plots in the left panel of the figure summarize the distributions of
estimated optimal FLS8 coefficients a and b for raw (R) and interpo-
lated (4N) green channel pixels. For comparison, we also report the
respective “global” coefficients, which we estimate from all pixels
disregarding their CFA neighborhood type. The right panel displays
corresponding box plots of per-image root mean square differences
between actual pixel intensities and predicted values. The empirical
distributions emphasize the high predictability of interpolated pix-
els. For this type, the estimated coefficients adhere to Eq. (2) with
negligible deviations (a = 1/4, b = 0) and yield very low prediction
errors (median RMS: 0.3). Coefficient estimates for non-interpolated
pixels differ considerably (median a: 0.76, median b: −0.51) and
are subject to content-dependent variation. The resulting prediction
errors indicate a substantially lower predictability (median RMS:

1A precise description of the dataset is given in Sect. 4.1.
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Fig. 3. Steganalysis results for different CFA neighborhood types as a function of embedding rate; left: 7,408 BOSS images; right: 3,316
Dresden Image Database color image blocks (Nikon D70); green channel bilinear CFA interpolation.

4.65). Global estimation results are a mixture of the two individual
types, with an overall slightly better pixel predictability than for raw
pixels alone. Interestingly, globally optimal filter coefficients (median
a: 0.40, median b: −0.15) moderate the drastic differences in the
predictability of raw and interpolated pixels mostly at the expense of
larger prediction errors for the latter type. Specifically, we observe
a median RMS of 2.31 when applying global coefficients to predict
interpolated pixels only, whereas the median RMS for raw pixels is
5.85. The results for the red and blue channel are very similar and
are thus omitted here for the sake of brevity.

3.2. WS Steganalysis with Type-Specific Cover Predictors

The performance of the estimator p̂ in Eq. (1) strongly depends on
the quality of the cover image estimate x̂(0) [3]. Hence, we deem
an explicit utilization of the specific CFA neighborhood relations
beneficial to steganalyze (individual channels of) color images. This
holds in particular for the types of interpolated pixels which have
tailored predictors as in Eq. (2). We thus replace the global cover pre-
dictor F with a type-specific version FC , C ∈ {4N, 4D, 2H, 2V,R},
depending on each individual pixel’s CFA position. Type-specific
WS estimates of the unknown embedding rate are then given by

p̂C =
2

|{C}|
∑

{i∈C}

(−1)x
(p)
i

(
x
(p)
i −FC

(
x(p))

i

)
. (3)

Optional local weights can be applied. Aggregating type-specific esti-
mates p̂C to a combined estimate p̂ is equivalent to assigning weights.

4. EXPERIMENTAL VALIDATION

4.1. Data and Setup

We use the BOSSBase [13] and a subset of the Dresden Image
Database [14] for our experiments. The former contains 10,000
grayscale images of size 512× 512, downsized from full-resolution
digital camera images. This substantial shrinking should remove all
genuine CFA artifacts. Then, we synthesize RGB cover images with
ideal CFA artifacts by sampling the grayscale images onto the Bayer

grid in Fig. 1-a and demosaic them with plain bilinear CFA interpo-
lation. We further use the tool dcraw with bilinear interpolation to
generate 3,400 color images from Nikon D70 raw images in the Dres-
den Image Database. This tool produces more realistic output than
plain bilinear interpolation as it applies more of the color processing
pipeline, such as white balancing. The size of the dcraw images is
also 512× 512, obtained by randomly cropping five non-overlapping
blocks from each demosaiced full-resolution image in landscape for-
mat. The cropping positions take the 2 × 2 CFA periodicity into
account, so that all blocks share the same CFA layout. A third set of
covers has been produced using Adobe Lightroom instead of dcraw.
This tool does not use bilinear interpolation, but demosaics raw im-
ages with a sophisticated (proprietary) content-adaptive function.

For each cover, steganographic embedding with embedding
rates p ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} is
simulated by flipping the least significant bits (LSBs) of randomly
chosen sets of np/2 pixels per color channel. We report steganalysis
results for individual color channels to isolate the effects of different
CFA neighborhoods. In all our analyses, we follow the practice to
exclude covers with more than 5 % flat blocks (of size 3×3), because
WS in known to accumulate bias from flat regions [2], and we do
not consider bias correction here. This selection explains the odd
numbers of images in the reported results. (Cautious steganographers
should never embed into covers with flat areas anyways.)

4.2. Steganalysis Results

4.2.1. Green channel

Figure 3 reports detection performance measured by MAE as a func-
tion of the embedding rate. The “global” KB8 detector represents the
state of the art and serves as benchmark. If the analysis is constrained
on interpolated pixels in the green channel using the type-specific
predictors, detection performance increases by up to an order of mag-
nitude for small embedding rates (i. e., the most relevant scenario).
The advantage of the proposed method is also visible for the dcraw
images, but substantially smaller. This can be explained by the in-
creasing model mismatch between estimates from predictors based on
a image model that assumes plain interpolation and a more complex
post-processing pipeline. Observe that the relative performance of

4012
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Fig. 4. Steganalysis results for different CFA neighborhood types as
a function of embedding rate; 6,127 BOSS images; red channel plain
bilinear CFA interpolation.

fixed and adaptive predictors changes between plain bilinear inter-
polation and dcraw. To a certain degree, the adaptive predictors
can better adjust to slight model mismatch. Quite expectedly, the
estimation errors are higher when only raw pixels are evaluated.

Table 2 summarizes performance indicators for the binary hy-
pothesis test p > 0 using selected predictors and CFA-interpolated
covers with and without embedding at p = 0.01. These figures also
show the performance boost for plain bilinear interpolation, which
is attenuated but still significant for the dcraw images. Only Light-
room causes a model mismatch large enough to let the KB8 predictor
gain advantage over type-specific predictors. We speculate that part
of this disadvantage can be compensated with larger kernel sizes and
content as well as type-adaptive predictors.

4.2.2. Red and blue channels

Figure 4 shows the corresponding results for the red channel. We also
find an advantage of the proposed method over the KB8 state-of-the-
art detector. The 4D predictor performs best. This is unsurprising as
the pixels it predicts exhibit the strongest linear dependence. More
surprisingly, the predictors 2V and 2H (not shown) outperform the
KB8 although they only take into account the information from two
neighbors, which makes them more sensitive to bias.

Due to the shared filter configurations, the blue channel results
are similar to the red channel.

4.3. Practical Considerations

Evaluating Eq. (3) with pre-set filter coefficients requires prior knowl-
edge of the underlying CFA layout. If this information is not directly
available, it can be inferred from the suspect image [15]. This re-
sembles the “forensics-aided” approach to steganalyze heterogeneous
material: in a first step, a forensic classifier determines the cover
source, then, a tailored method it picked from a bank of steganalyz-
ers to output the final estimate or decision [16]. Alternatively, it is
possible to find the optimal filter coefficients adaptively using an LS
procedure with two sets of coefficients for the green channel, and
four each for the red and blue channels. The latter approach increase
the running time by a constant factor, but it remains linear in n.

Table 2. Equal error rate (EER) and false positive rate at 50 % detec-
tion rate (FP50) for binary steganalysis decisions on green channel
CFA-interpolated covers.

(p = 0.01) bilinear adaptive

plain dcraw Lightroom
N=7,408 N=3,316 N=3,166

F FP50 EER FP50 EER FP50 EER

Standard WS (KB8)

FKB8 0.35 0.41 0.23 0.33 0.08 0.19
FLS8 0.38 0.43 0.26 0.34 0.09 0.20

Proposed CFA-WS (4N)

F4N 0.01 0.05 0.15 0.20 0.19 0.30
FLS8 0.01 0.04 0.10 0.16 0.11 0.23

5. CONCLUSION AND OUTLOOK

We propose an improved variant of WS steganalysis optimized for
stego images from CFA-interpolated covers (shorthand: CFA-WS).
Experimental results show substantial performance boosts for small
embedding rates as long as sufficient information about the demosaic-
ing function is available or can be inferred from the suspect image.
In numbers: a steganalyst who faces 35 % false positives at 50 %
detection rate with conventional targeted detectors can reduce her
false positives to 1 % by using the proposed method.

The analysis was intentionally confined to LSB replacement be-
cause it is best understood and proven efficient closed-form detectors
are readily available [17]. We also refrained from aggregating the evi-
dence extracted from each color channel as this is related to assigning
weights wi in weighted WS steganalysis (see Sections 2.2 and 3.2),
a topic that is best studied independently [18]. Next steps include
other embedding operations in the spatial and possibly transformed
domain, as well as considering more general preprocessing chains,
such as interpolation after resizing.

Our findings illustrate how urgent it is to fill the gap of rigorous
research on color image steganography.2 Color-sensitive steganalysis
is only a first step that can define a benchmark. And our results
must be interpreted as lower bound for the additional insecurity
of embedding in color images because our detector exploits only
dependencies within a color channel due to color interpolation at
cover generation. Dependencies between color channels remain to
be explored for steganography, suggesting detection strategies that
verify the consistency of CFA artifacts throughout a suspect image
[9] and embedding strategies that integrate methods to synthesize a
plausible CFA pattern in stego images [20]. Unless those techniques
are well understood, steganographers should better stay away from
color images (and hence from image steganography at all unless they
find a channel where grayscale images are plausible).
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2MPSteg-color is a commendable exception [19].
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