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ABSTRACT
We study secure multi-antenna transmission with limited feedback
from the intended receiver and no feedback from the malicious
eavesdropper. Our system uses the artificial-noise-aided beamform-
ing approach to enhance secrecy, considering slow fading channels
with outage constraints on the reliability performance of legitimate
communication and the secrecy performance against eavesdropping.
Our analytical results provide conditions on the minimum number
of feedback bits and the minimum strength of the intended channel
for making secure transmission possible. We observe that strength-
ening the secrecy outage constraint puts higher requirements on the
number of feedback bits and the strength of the intended channel.
To maximize the achievable secrecy rate, the optimal transmit power
allocation between the information signal and the artificial noise is
also derived in closed form.

Index Terms— Artificial noise, limited feedback, physical-
layer security, transmit power allocation.

1. INTRODUCTION

Much existing literature on physical-layer security assumes feed-
back of channel information from the eavesdropper. This is often an
idealistic assumption and the designed system might be vulnerable
if the eavesdropper chooses to keep silent and does not disclose its
channel information to the legitimate users. Previous contributions
have intentionally introduced artificial noise to degrade the eaves-
dropper’s signal reception, which also reduced/removed the require-
ment for the eavesdropper’s channel knowledge [1–6]. Nevertheless,
most of the work in this line assumed perfect knowledge of the in-
tended channel, which is still often too optimistic. Several previous
papers have considered secure transmission design when the channel
knowledge of the eavesdropper is not available, and that of the in-
tended receiver is only imperfectly known at the transmitter [7–12].
To be specific, the studies in [7, 8] maximized the transmit power
used to generate artificial noise, whilst guaranteeing a certain level
of signal reception at the intended receiver. For fast fading channels,
the studies in [9–11] characterized the ergodic secrecy rate perfor-
mance and investigated the optimal transmit power allocation. For
slow fading channels, the studies in [12] developed efficient algo-
rithms for finding the optimal transmission rates and transmit power
allocation that maximize the secrecy outage capacity.

The work of X. Zhang and M. R. McKay was supported by the Hong
Kong Research Grants Council under Grant No. 616312. The work of X.
Zhou was supported by the Australian Research Council’s Discovery Projects
funding scheme under Project No. DP110102548. The work of R. W. Heath
was supported by the National Science Foundation under Grant No. NSF-
CCF-1218338.

In this paper, we consider artificial-noise-aided secure multi-
antenna transmission in slow fading channels, with limited feed-
back [13–18] from the intended receiver and no feedback from
the eavesdropper. The channel knowledge obtained from pilot
training is decomposed into two parts: the channel quality infor-
mation (CQI) (i.e., the amplitude), and the channel direction infor-
mation (CDI) (i.e., the direction in the unit complex hypersphere).
The CQI is just a real positive number, while the CDI is a complex
vector. For this reason, we assume that the CQI is accurately known
at the transmitter, and focus on the quantization of the CDI [19]. We
apply random vector quantization (RVQ) to quantize and feed back
the CDI. Outage constraints are given to the reliability performance
of legitimate communication and the secrecy performance against
eavesdropping, and we carefully choose the transmission rates for
wiretap coding [20] to meet these constraints. Our analytical results
provide an easy-to-follow design guideline for the optimal secrecy
rate performance. We first derive conditions on the number of feed-
back bits and the strength of the intended channel, under which a
positive secrecy rate is achievable. Then, we provide a closed-form
solution for the optimal transmit power allocation between the in-
formation signal and the artificial noise for achieving the maximum
secrecy rate.

Prior work in [10] also considered quantized CDI, but studied
the ergodic secrecy rate for fast fading channels, while we apply
an outage formulation to study the secure transmission design in
slow fading channels. While [12] developed numerical algorithms
for finding the optimal design parameters in slow fading channels,
we provide closed-form solutions, which lead to new insights. First,
our analysis reveals that a minimum number of feedback bits and a
minimum strength of the intended channel are required for achieving
a positive secrecy rate. Secondly, we observe that imposing a more
stringent secrecy outage constraint puts higher requirements on the
number of feedback bits and the strength of the intended channel.
Finally, we demonstrate different asymptotic behaviors of the opti-
mal transmit power allocation with perfect channel knowledge [5] or
with only limited feedback.

2. SYSTEM MODEL

Consider a system where the transmitter is equipped with N ≥ 2 an-
tennas, while the intended receiver and the malicious eavesdropper
each has only a single antenna. We apply independent slow Rayleigh
fading to model the wireless channels in a rich-scattering environ-
ment without line-of-sight transmission. The received signal at the
intended receiver is given by

yb = hHx+ nb (1)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3996



where h ∼ CN (0, IN ) is the intended channel, x is the transmitted
vector, and nb ∼ CN (0, 1) is the normalized thermal noise. The
received signal at the eavesdropper is given by

ye = gHx+ ne (2)

where g ∼ CN (
0, σ2

gIN
)

is the channel to the eavesdropper,

with σ2
g as the variance of each element of g. As will be seen later,

our analysis is valid for any value of σ2
g , allowing the eavesdropper

to be located at an arbitrary distance from the transmitter. As a robust
secure transmission design, we consider a powerful eavesdropper
with negligible thermal noise, i.e., ne ≈ 0.

2.1. Limited Feedback and Quantization

After pilot training, the obtained channel information is decomposed
into the CQI ‖h‖ and the CDI h/‖h‖. Note that the CQI follows a
chi distribution, which is real and positive, and it can be quantized
efficiently using a small number of bits. Meanwhile, the CDI is uni-
formly distributed on the N -dimensional unit complex hypersphere,
which is much more difficult to quantize. Hence, we assume that the
CQI is accurately known at the transmitter, and use B1 bits to quan-
tize the CDI [19]. We choose 2B1 unit-norm vectors to form a code-
book C = {c1, . . . , c2B1 }, which is known at both the transmitter
and receiver. Then, an index selected from the following criterion:

�̂ = argmax
�∈{1,...,2B1}

∣∣∣cH� h
∣∣∣ (3)

is fed back to the transmitter. Therefore, the corresponding unit-
norm vector c�̂ is the quantized CDI available at the transmitter. If
the entries in C are drawn from the unit hypersphere randomly and
independently, the resulting quantization scheme is RVQ. The opti-
mal quantization scheme is generally unknown, and RVQ is adopted
because it is amenable to analysis and performs close to optimal
quantization [21–23].

2.2. Artificial-Noise-Aided Beamforming

Define the power allocation ratio φ as the ratio of the information
signal power σ2

u to the total transmit power P . We denote the in-
formation signal by u ∼ CN (

0, σ2
u

)
with σ2

u = Pφ. To confuse
the malicious eavesdropper, the transmitter performs artificial-noise-

aided beamforming [1]. To be specific, given a feedback index �̂, the
quantized CDI available at the transmitter is c�̂; then, the transmitted
vector x in (1) admits:

x = c�̂u+Wv (4)

where [c�̂,W] is an orthonormal basis and v ∼ CN (
0, σ2

vIN−1

)
is the artificial noise vector with σ2

v = P (1− φ)/(N − 1).

2.3. Quantization Cell Approximation

As done in [23, 24], we approximate the quantization cell associated
with c�̂ ∈ C as

Ṽ�̂ =

{
z|‖z‖ = 1,

∣∣∣zHc�̂

∣∣∣2 ≥ 1− 2−
B1

N−1

}
(5)

where the quantity 2−
B1

N−1 reflects the maximum quantization error
in the CDI. It was shown in [23, 24] that the performance of RVQ
can be closely approximated by such an approximation.

2.4. Wiretap Coding and Outage Definitions

Before transmission, the data is encoded using a wiretap code [20].
The codeword rate and the secrecy rate are denoted by Rb and Rs,
respectively, with the rate redundancy Re := Rb −Rs intentionally
added to provide secrecy. If the intended channel cannot support the
codeword rate Rb, we consider this as a connection outage event. If
the channel to the eavesdropper can support a data rate larger than
the rate redundancy Re, a secrecy outage is deemed to occur [25].
More discussions on code construction can be found in [26].

3. SECURE TRANSMISSION DESIGN

In this section, we first derive the connection and secrecy outage
probabilities to measure the reliability performance of legitimate
communication and the secrecy performance against eavesdropping,
respectively. Then, we provide a detailed secure transmission design
for the transmission rates and transmit power allocation, under given
outage probability constraints.

3.1. Connection Outage Probability

For a given realization of the intended channel, the connection out-
age probability pco (h) is defined as the probability that the signal-
to-noise ratio (SNR) at the intended receiver falls below a prese-
lected threshold βb.

Denote the exact CDI by d = h/‖h‖. Given a feedback index �̂,

the exact CDI d will fall into Ṽ�̂. By (5), we define

cos2 θ :=
∣∣∣dHc�̂

∣∣∣2 ≥ 1− 2−
B1

N−1 . (6)

The randomness in quantization error is embedded in the distribution
of cos2 θ. By [23, Lemma 6], the cumulative distribution function
of sin2 θ = 1− cos2 θ is given by

Pr
(
sin2 θ ≤ z

)
=

⎧⎪⎪⎨
⎪⎪⎩
0 for z ≤ 0

2B1zN−1 for 0 < z ≤ 2−
B1

N−1

1 for z > 2−
B1

N−1

. (7)

By (1) and (4), the received signal at the intended receiver is
given by

yb = ‖h‖dHc�̂u+ ‖h‖dHWv + nb (8)

with the corresponding SNR given by

SNRb =
‖h‖2 cos2 θσ2

u

‖h‖2 sin2 θσ2
v + 1

(9)

which follows from (6) and the fact
∣∣dHc�̂

∣∣2 + ‖dHW‖2 = 1.

To the transmitter, the quantization error in the obtained CDI is
unknown, and the SNR at the intended receiver is actually a random
variable. By (7), the connection outage probability pco (h) can be
computed as

pco (h) = Pr (SNRb ≤ βb) (10)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 for βb ≤ β1

1− 2B1

(
‖h‖2Pφ−βb

‖h‖2
(
Pφ+

P (1−φ)
N−1

βb

)
)N−1

for β1 < βb ≤ β2

1 for βb > β2
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where

β1 =
‖h‖2Pφ

(
1− 2−

B1
N−1

)
‖h‖2 P (1−φ)

N−1
2−

B1
N−1 + 1

β2 = ‖h‖2Pφ. (11)

Note that the connection outage probability pco (h) and the defined
boundary value β1 are both functions of the number of feedback bits
for the CDI B1. As B1 grows large, β1 → β2 and pco (h) becomes
a step function with transition at βb = ‖h‖2Pφ.

3.2. Secrecy Outage Probability

For a given realization of the intended channel, the secrecy outage
probability pso (h) is defined as the probability that the received
SNR at the eavesdropper exceeds a preselected threshold βe.

By (2) and (4), the received signal at the eavesdropper ye is given
by

ye = gHc�̂u+ gHWv (12)

with corresponding SNR

SNRe =

∣∣gHc�̂
∣∣2 σ2

u

‖gHW‖2σ2
v

. (13)

Since the channel to the eavesdropper is unknown to the legitimate
users, by [5, eq. (5)], the secrecy outage probability pso (h) can be
computed as

pso (h) = Pr (SNRe ≥ βe) =

(
1 + βe

φ−1 − 1

N − 1

)1−N

(14)

which is independent of h. Note that this result holds true for any
value of σ2

g , allowing the eavesdropper to be located at an arbitrary
distance from the transmitter, which is very desirable.

We now provide a detailed secure transmission design under
given constraints on the connection and secrecy outage probabilities.

3.3. Connection and Secrecy Outage Constraints

To ensure the reliability performance of legitimate communication
and the secrecy performance against eavesdropping, we enforce the
following constraints on the connection and secrecy outage proba-
bilities:

pco (h) ≤ σ and pso (h) ≤ ε (15)

where σ, ε ∈ [0, 1]. We then carefully choose the transmission
rates Rb and Re to meet these constraints.

By (10), for a given realization of the intended channel, the con-
nection outage constraint pco (h) ≤ σ implies that the maximum
allowable codeword rate Rb = log2 (1 + βb) is

Rmax
b (h, φ) = log2

⎛
⎝1 +

‖h‖2Pφ
(
1− N−1

√
1−σ

2B1

)
‖h‖2 P (1−φ)

N−1
N−1

√
1−σ

2B1
+ 1

⎞
⎠ . (16)

As can be seen, with a sufficient number of feedback bits for the
CDI (i.e., as B1 → ∞), the transmitter adapts the codeword rate Rb

to the capacity of the intended channel, regardless of the connection
outage constraint σ.

From (14), under the secrecy outage constraint pso (h) ≤ ε, the
minimum required rate redundancy Re = log2 (1 + βe) is

Rmin
e (h, φ)=log2

(
1+

φ

1−φ
(N−1)

(
N−1

√
1

ε
−1

))
. (17)

Note that the required rate redundancy Re becomes infinitely large
in the limit that ε = 0 with φ 
= 0, i.e., it is impossible to completely
avoid secrecy outages. Henceforth, we focus on the case ε ∈ (0, 1].

Since the achievable secrecy rate is given by Rs = Rb−Re, it is
desirable to choose the maximum Rb and the minimum Re that meet
the outage constraints. Note that the transmit power allocation is yet
to be optimized for maximizing the secrecy rate. From (16) and (17),
for a given realization of the intended channel, the maximum secrecy
rate Rmax

s , under the outage constraints in (15), is given by

Rmax
s (h) = max

φ∈(0,1)

[
Rmax

b (h, φ)−Rmin
e (h, φ)

]+
(18)

where [x]+ = max {0, x}.

3.4. Conditions for Positive Secrecy Rate

We now investigate the conditions under which a positive secrecy
rate is achievable. From (18), we derive two necessary conditions as
follows.

First, a minimum number of feedback bits for the CDI is re-
quired:

B1 ≥ Bmin
1 :=

{⌊
log2

(
1−σ
ε

)⌋
+ 1 for σ + ε < 1

1 for σ + ε ≥ 1
(19)

where �x� is the integer part of x. This condition suggests that un-
der the connection and secrecy outage constraints, a positive secrecy
rate cannot be achieved if the transmitter is not sufficiently confident
about the beamforming direction. We point out that the first case is
most relevant since the allowable outage probabilities are typically
small, while the second case is not very relevant in practice.

From (19), we make the following observations:

• For a given connection outage constraint σ, reducing the secrecy
outage constraint ε exponentially requires a linear increase in the
minimum number of feedback bits for the CDI Bmin

1 , and it grows
unbounded as ε → 0. The underlying reason is that to reduce
the quantization error in the CDI and thereby giving a chance for
achieving a positive secrecy rate, a large number of feedback bits
is required. This observation is illustrated in Fig. 1. With a typi-
cal secrecy outage constraint ε ∈ [0.001, 0.01], roughly Bmin

1 ∈
[7, 10] feedback bits are needed, and it is not very sensitive to the
value of σ.

• Interestingly, this condition is independent of the number of trans-
mit antennas N . As can be seen from (5) and (10), for a given
number of feedback bits for the CDI B1, increasing N will lead
to a larger quantization error and thus a larger connection outage
probability. Meanwhile, as can be seen from (14), increasing N
would reduce the secrecy outage probability. These two effects
canceled each other and this is why we do not see N in (19).

• For a given secrecy outage constraint ε, the required minimum
number of feedback bits Bmin

1 increases by imposing a more strin-
gent connection outage constraint (i.e., reducing σ), and its maxi-
mum value is given by

⌊
log2

(
1
ε

)⌋
+1. This makes sense because

we assumed bounded quantization error in the CDI. When σ = 0,
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Fig. 1. Minimum required number of feedback bits for the CDI Bmin
1

versus the secrecy outage constraint ε.

the transmitter assumes that the angle between the obtained CDI
and the exact one is at its maximum possible value, and thereby
matches the codeword rate in (16) to the minimum possible ca-
pacity of the intended channel.

Second, having satisfied the condition in (19), the strength of the
intended channel still must be strong enough:

‖h‖2 > μ1 :=
(N − 1)

(
N−1

√
1
ε
− 1

)
P
(
1− N−1

√
1−σ

2B1 ε

) . (20)

From this condition, an on-off transmission strategy [25] with a
transmit threshold μ1 is adopted. As expected, with a sufficient
number of feedback bits for the CDI (i.e., as B1 → ∞), the transmit
threshold μ1 converges to the one with perfect knowledge of the
intended channel, given in [5, eq. (28)].

3.5. Transmit Power Allocation Optimization

When the conditions for a positive secrecy rate in (19) and (20) are
satisfied (i.e., B1 ≥ Bmin

1 and ‖h‖2 > μ1), secure transmission
becomes possible and we further optimize the transmit power allo-
cation between the information signal and the artificial noise. The
power allocation problem in (18) can now be rewritten as

Rmax
s (h) = max

φ∈(0,φmax)
Rmax

b (h, φ)−Rmin
e (h, φ) (21)

where

φmax = 1−
(N − 1)

(
N−1

√
1
ε
− 1

)
‖h‖2P

(
1− N−1

√
1−σ

2B1 ε

) > 0. (22)

By the monotonicity of the logarithm function, we find the opti-
mal power allocation ratio as follows:

φ∗(h)=
(X−YZ−Z)Y +X−√

X−YZ−Z+1
√

XZ (Y +1)

(X−YZ)Y +X−XZ
(23)
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Fig. 2. Optimal power allocation ratio φ∗ (h) versus the transmit

power P , with N = 8, σ = 0.01, ε = 0.01 and ‖h‖ = 2
√
2.

where

X = ‖h‖2P
(
1− N−1

√
1− σ

2B1

)

Y =
‖h‖2P
N − 1

N−1

√
1− σ

2B1

Z = (N − 1)

(
N−1

√
1

ε
− 1

)
. (24)

From (23), we make the following observations:

• With a given transmit power P , increasing the number of feed-
back bits for the CDI B1 leads to a decrease in the optimal
power allocation ratio φ∗ (h). Since we assumed that the CQI
is accurately known at the transmitter, as one may expect, we
have limB1→∞ φ∗ (h) = φ∗

perfect (h), where φ∗
perfect (h) is the

optimal power allocation ratio with perfect knowledge of the
intended channel, given in [5, eq. (29)].

• With a given number of feedback bits for the CDI B1, by in-
creasing the transmit power P , the optimal power allocation
ratio φ∗ (h) increases towards one, i.e., limP→∞ φ∗ (h) = 1.
This is quite different from the case with perfect channel knowl-
edge (i.e., B1 → ∞), where limP→∞ φ∗

perfect (h) < 1 [5].
With quantization error in the CDI and as the transmit power
grows large, the optimal power allocation strategy is to give more
transmit power to the information signal, which will in turn re-
duce the artificial noise that leaks into the intended channel. This
observation is confirmed in Fig. 2.

4. CONCLUSION

The obtained optimal design of artificial-noise-aided secure multi-
antenna transmission with limited feedback can be summarized as
follows: 1) For given connection and secrecy outage constraints
in (15), ensure that there are enough feedback bits for the CDI, as
stated in (19); 2) When the intended channel is stronger than (20),
transmit with the rates and power allocation parameters in (16), (17)
and (23). The secrecy throughput can be evaluated by averaging
the maximum secrecy rate over all channel realizations, and it is cur-
rently under investigation, together with the quantization of the CQI.
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