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ABSTRACT

Compressive Sensing (CS) allows to acquire signals at sam-

pling rates significantly lower than the Nyquist rate, provided

that the signals possess a sparse representation in an appro-

priate basis. However, in some applications of CS, the dictio-

nary providing the sparse description is partially or entirely

unknown. It has been shown that dictionary learning algo-

rithms are able to estimate the basis vectors from a set of

training samples. In some applications the dictionary is mul-

tidimensional, e.g., when estimating jointly azimuth and el-

evation in a 2-D direction of arrival (DOA) estimation con-

text. In this paper we show that existing dictionary learning

algorithms can be extended to exploit this structure, thereby

providing a more accurate estimate of the dictionary. As ex-

amples we choose two prominent dictionary learning algo-

rithms, the method of optimal directions (MOD) and the K-

SVD algorithm. We propose tensor-based multidimensional

extensions for both algorithms and show their improved per-

formances numerically.

1. INTRODUCTION

The field of Compressive Sensing (CS) has led to a new un-

derstanding in the way we sample signals. It has been shown

that sampling rates below the Nyquist rate can be used for

signal acquisition without any loss of information if the sig-

nal is “sparse” in a suitable domain. This domain does not

need to be known for sampling the signal but only for its re-

construction, which bears the potential to significantly lower

the complexity of the sampling devices. The reconstruction

process known as sparse recovery is a non-convex combina-

torial problem. However, it has been shown that under mild

assumptions, convex relaxations (such as the Basis Pursuit [1]

or the LASSO algorithm [2]) or even simpler approximations

(such as greedy [3] or thresholding-based algorithms [4]) per-

form very well.

Note that all recovery algorithms require the exact knowl-

edge of the sensing matrix (which we refer to as “dictionary”

in this paper) which provides the overcomplete basis for the

sparse representation of our observations. In some applica-

tions, this matrix may be partially or completely unknown.

For instance, in image and video coding it is common to es-

timate a sparsifying dictionary from training samples (thus,

learning “typical patterns” from the observations). In other

applications the knowledge of the dictionary may be erro-

neous, for instance due to calibration errors, jitter, or due to

the gridding problem for continuous manifolds [5].

It has been shown that dictionary learning algorithms

can estimate the dictionary vectors from a finite set of ob-

servations (“training samples”). A large manifold of dic-

tionary learning algorithms have been proposed in recent

years. There are two main families of algorithms: Maximum-

Likelihood (or Maximum A Posterori) based schemes [6, 7, 8]

and Least-Squares (LS) type schemes [9, 10, 11, 12, 13]. Due

to their simplicity and popularity, we focus on LS-type al-

gorithms. In fact, many of the recently developed LS-type

dictionary learning algorithms can be seen as an extension of

the Method of Optimal Directions (MOD) [9] or the K-SVD

algorithm [10]. Therefore, we consider the MOD and the

K-SVD algorithm as a baseline.

In this paper, we focus on learning multidimensional sep-

arable dictionaries. These appear in some multidimensional

parameter estimation problems, e.g., 2-D DOA estimation on

separable array manifolds [14], joint DOA-DOD (direction

of departure) estimation in a co-located MIMO-Radar set-

ting [15], biomedical signal analysis [16, 17], or communi-

cations [18, 19]. We show that the multidimensional dic-

tionary estimation problem can be efficiently formulated in

terms of tensors. This formulation guides to efficient tensor-

based dictionary estimation algorithms which outperform ex-

isting schemes by exploiting the multilinear structure of the

problem. In particular, we propose tensor extensions of the

MOD and the K-SVD algorithm and show their improved per-

formance numerically.

Throughout the paper, vectors, matrices, and tensors are

denoted by lower-case bold-faced letters (a, b, ...), upper-case

bold-faced letters (A,B, ...), and bold-faced calligraphic

letters (A,B, ...), respectively. The transpose, Hermitian

transpose, and pseudo-inverse of a matrix A are written

as AT, AH, and A+, respectively. For an R-D tensor

A ∈ C
M1×M2×...×MR , the r-mode unfolding denoted as

[A](r) ∈ C
Mr×(M1·...·Mr−1·Mr+1·MR) represents a rearrange-

ment of A in a matrix, where the r-th index is used as a row
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index and all other indices are aligned along the columns

(aligned in reverse cyclical ordering, cf. [20]). The r-mode

product between a tensor A ∈ C
M1×M2×...×MR and a ma-

trix U ∈ C
Nr×Mr is written as A ×r U and defined via

[A×r U ](r) = U · [A](r). The Kronecker product between

two matrices A and B is written as A ⊗ B. The two-norm

of a vector is denoted by ‖a‖2 and the Frobenius norm of a

matrix or a tensor as ‖A‖F.

2. DATA MODEL

Consider a generic sparse recovery problem of the following

form

X = A · S +W , (1)

where X ∈ C
M×T represents T consecutive observations

from M sensors, A ∈ C
M×N is the overcomplete dictionary,

S ∈ C
N×T represents the sparse coefficient matrix, W ∈

C
M×T is the additive noise, and we have M < N < T . If A

is known, we can recover S from X by using an appropriate

sparse recovery algorithm [1, 2, 3, 4].

In our setting, A is partially or entirely unknown. There-

fore, A and S must be estimated jointly from X , using the

fact that S is known to be sparse. In LS-type algorithms the

objective is given by [9]

min
A,S
‖X −A · S‖F (2)

s.t. ‖S‖0 ≤ Kmax, ‖an‖2 = 1, n = 1, 2, . . . , N,

where Kmax is the maximum number of non-zero elements1

in S, and an is the n-th column of A. The norm constraint

on A is introduced to remove scaling ambiguities between

dictionary elements and the corresponding amplitudes in S.

We now turn to the R-dimensional setting. For brevity,

we discuss the special case of R = 2 only. However, the

extension to R > 2 is straightforward. Consider a sparse re-

covery problem for a separable 2-D manifold, i.e., a manifold

that can be written as the product of two 1-D manifolds [14].

To apply CS, we need to discretize the 2-D manifold. If we

choose a separable 2-D sampling grid, we can write the dic-

tionary A as

A = A
(1) ⊗A

(2), (3)

where A(1) ∈ C
M1×N1 , A(2) ∈ C

M2×N2 , and we have M =
M1 ×M2, N = N1 ×N2. Therefore, (1) becomes

X = (A(1) ⊗A
(2)) · S +W . (4)

The Kronecker model (4) can be rewritten in an equivalent

tensor form. Applying the algebraic rules for unfoldings of

n-mode products [21, 20] we can rewrite (4) into

X = S ×1 A
(1) ×2 A

(2) +W , (5)

1This constraint is only used for clarity of presentation. We do not need to

know Kmax in advance for the tensor-based dictionary learning algorithms.

• Initialize Â

• Repeat for NIt iterations

– Ŝ ← SparseRec{X, Â}
– Â←X · Ŝ+

– Normalize columns of Â

Table 1. Summary of the MOD algorithm [9].

• Initialize Â(1), Â(2)

• Repeat for NIt iterations

– Ŝ ← SparseRec{X, Â(1) ⊗ Â(2)}

– Â(1) ← [X ](1) ·
(

[

Ŝ

]

(1)
· (Â(2) ⊗ IT )

T

)+

– Â(2) ← [X ](2) ·
(

[

Ŝ

]

(2)
· (IT ⊗ Â(1))T

)+

– Normalize columns of Â(1), Â(2)

Table 2. Summary of the T-MOD algorithm.

where X ∈ C
M1×M2×T , S ∈ C

N1×N2×T , and W ∈
C

M1×M2×T are rearranged versions of the matrices X , S,

and W such that X = [X ]
T
(3), S = [S]

T
(3), and W =

[W ]
T
(3), respectively. Note that (5) is known as a “Tucker-2”

decomposition [22]. The optimization problem (2) can be

written in tensor form as

min
A(1),A(2),S

∥

∥

∥
X − S ×1 A

(1) ×2 A
(2)

∥

∥

∥

F
(6)

s.t. ‖S‖0 ≤ Kmax,
∥

∥

∥
a
(r)
nr

∥

∥

∥

2
= 1, nr = 1, 2, . . . , Nr, r = 1, 2,

where a
(r)
nr

is the nr-th column of A(r) for r = 1, 2. The

advantage of the tensor-based optimization problem (6) com-

pared to the matrix-based optimization problem (2) is that it

captures the multilinear nature, i.e., the way the matrices A(1)

and A(2) act on S to construct X in a more natural form. As

we show in the next section, this guides us to find efficient

algorithms that exploit this multilinear structure.

3. TENSOR-BASED DICTIONARY LEARNING

ALGORITHMS

In this section we review the MOD [9] and the K-SVD [10]

algorithm that estimate A and S from observations X that

obey (1). We provide tensor extensions to estimate A(1), A(2)

and S from observations X that follow (5).

Let us begin with the MOD. It is based on the following

observation: if we know S in (1), A can be estimated solving

a linear least squares (LS) problem. Conversely, knowing A

we obtain S by solving a sparse recovery problem. MOD it-

erates between the two steps, starting with an initial guess of

A (e.g., by using training samples or our partial knowledge

of A). The MOD algorithm is summarized in Table 1, where

SparseRec{X,A} denotes an arbitrary sparse recovery al-

gorithm such as BP, LASSO, OMP, etc.
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• Initialize Â

• Repeat for NIt iterations

– Ŝ ← SparseRec{X, Â}
– for n = 1, 2, ..., N
∗ Compute X̃n according to (7), (8)

∗ Determine truncated SVD of X̃n ≈ u ·σ ·vH

∗ Update an ← u and s̃Tn ← σ · vH

Table 3. Summary of the K-SVD algorithm [10].

• Initialize Â(1), Â(2)

• Repeat for NIt iterations

– Ŝ ← SparseRec{X, Â(1) ⊗ Â(2)}
– for n1 = 1, 2, ..., N1, n2 = 1, 2, ..., N2

∗ Compute X̃n1,n2
according to (10), (11)

∗ Determine truncated HOSVD of X̃n1,n2
≈

σ · u ◦ v ◦w
∗ Update a

(1)
n1 ← u, a

(2)
n2 ← v, and s̃n ← σ·w

Table 4. Summary of the K-HOSVD algorithm.

The MOD algorithm to solve (2) can easily be extended to

solve (6). Instead of iterating between updating S and A, we

iterate between updating S, A(1), and A(2). The LS-optimal

solutions for A(1) and A(2) are found by solving LS problems

in the 1-mode and the 2-mode unfolding of X . For finding S

we apply the same solutions as in the matrix case2. The result-

ing algorithm called T-MOD (“Tensor-MOD”) is summarized

in Table 2.

Despite its simplicity, the MOD algorithm has been crit-

icized for its slow convergence, which is due to the fact that

A and S are updated separately, which may lead to a slow

convergence [10]. This has motivated the authors in [10] to

come up with an algorithm that updates the elements of A

and S jointly. It is based on the idea that the matrix product

A · S can be written as a sum of N rank-one matrices via

A · S =
∑N

n=1 an · sTn , where sTn denotes the n-th row of

S. Therefore, instead of iterating between updating A and

S they propose to iterate between the N atoms in the sum,

for each atom updating the corresponding elements an and

sTn jointly. The optimization problem (2) for the n-th atom

becomes

min
an,sT

n

∥

∥

∥

∥

∥

X −
N
∑

p=1

ap · sTp

∥

∥

∥

∥

∥

F

= min
an,sT

n

∥

∥Xn − an · sTn
∥

∥

F
,

where Xn = X −
N
∑

p=1p 6=n

ap · sTp (7)

Using the estimate of the support set of S from the sparse re-

2So far we have not found a simple way how the sparse recovery algo-

rithms could benefit from the multilinear structure of the dictionary. We leave

this as an issue of future research.

covery stage, the columns of Xn and sTn corresponding to the

zero elements in sTn can be deleted. We obtain the reduced-

size problem

min
an,s̃T

n

∥

∥

∥
X̃n − an · s̃Tn

∥

∥

∥

F
, (8)

where X̃n ∈ C
M×Kn and s̃Tn ∈ C

1×Kn are the reduced-size

versions of Xn and sTn and Kn is the number of non-zero el-

ements in sTn . The resulting problem (7) is a matrix rank-one

approximation problem which is easily solved via a truncated

SVD. LS-optimality is then guaranteed by the Eckart-Young

theorem [23]. The K-SVD algorithm is shown in Table 3.

We can follow the same train of thought in the tensor case.

In particular, the noise-free X can be expanded into N =
N1 ·N2 rank-one tensors in the following manner

S ×1 A
(1) ×2 A

(2) =

N1
∑

n1=1

N2
∑

n2=1

a
(1)
n1
◦ a(2)

n2
◦ sn (9)

where n = (n1 − 1) ·N2 + n2 and ◦ denotes the outer prod-

uct. Consequently, the optimization problem (6) for one atom

becomes

min
a

(1)
n1

,a
(2)
n2

,sn

∥

∥

∥
Xn1,n2

− a
(1)
n1
◦ a(2)

n2
◦ sn

∥

∥

∥

F
, where (10)

Xn1,n2
= X −

N1
∑

p1=1
(p1,p2) 6=

N2
∑

p2=1
(n1,n2)

a
(1)
p1
◦ a(2)

p2
◦ s(p1−1)·N2+p2

As before, we reduce the sparse vector sn ∈ C
T×1 to its non-

zero entries s̃n ∈ C
Kn×1. Similarly, Xn1,n2

∈ C
M1×M2×T

is reduced to X̃n1,n2
∈ C

M1×M2×Kn . This results in

min
a

(1)
n1

,a
(2)
n2

,s̃n

∥

∥

∥
X̃n1,n2

− a
(1)
n1
◦ a(2)

n2
◦ s̃n

∥

∥

∥

F
. (11)

Clearly, (11) represents a rank-one tensor approximation

problem. Such problems have been intensively studied in

the literature. In general, the LS-optimal solution cannot be

computed in closed-form but it requires iterative algorithms

[24, 25]. However, a truncated version of the multilinear ex-

tension of the SVD known as Higher-Order SVD (HOSVD)

[20] provides a rank-one approximation that is very close to

the LS-optimal one (in particular, for medium to high SNRs).

Since its complexity is much lower than the iterative LS-

optimal schemes, we propose to solve (10) via a truncated

HOSVD. Therefore, the K-SVD algorithm is extended to

tensors by replacing the sequential rank-one matrix approx-

imation step obtained via truncated SVDs by a sequential

rank-one tensor approximation step obtained via truncated

HOSVDs. The resulting algorithm is called K-HOSVD. We

summarize it in Table 4.

Concerning the computational cost in floating point op-

erations (FLOPS) per iteration, if we only count the dictio-

nary update stage (since the sparse recovery stage is the same
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Fig. 1. Identified dictionary atoms vs. the iteration in-
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Fig. 2. Identified dictionary atoms vs. the number of

training samples T

in all methods) we can conclude the following. Assuming

T ≫ N > M , a “symmetrical” scenario where M1 = M2 =√
M and N1 = N2 =

√
N , and reasonable assumptions on

the complexity of LS and the SVD, we obtain approximately

2NT (N + M) FLOPS for MOD, 4T (N
√
M + M

√
N) for

T-MOD, 2M2(KT +MN) for the K-SVD, and 2M2(KT +
MN) + 4M

√
MKT for the K-HOSVD. Therefore, the K-

HOSVD is slightly more complex than the K-SVD (how-

ever, the asymptotic complexity order is the same) and T-

MOD is less complex than MOD (by a factor of approxi-

mately N/
√
M/2).

4. NUMERICAL RESULTS

In order to demonstrate the performance of the tensor-based

dictionary learning algorithms we present some numerical re-

sults obtained via Monte Carlo simulations in this section. We

consider observations according to (4) for M1 = M2 = 5,

N1 = N2 = 8. The dictionary elements in A(1) and A(2)

are drawn from an i.i.d. zero mean Gaussian random process,

normalized such that both matrices have unit-norm columns.

The matrix W follows the same distribution where each el-

ement has a variance of PN = 0.001. For the matrix S we

assume that each column has K = 3 non-zero entries. Their

amplitudes are drawn from a zero mean variance one random

Gaussian process. Due to its low computational complex-

ity we employ the Orthogonal Matching Pursuit (OMP) algo-

rithm [3] to for the sparse recovery stage in all the dictionary

learning algorithms, assuming that K is known. To assess the

quality of the trained dictionaries we adopt the same metric

that was used in [10]: we count the relative number (fraction)

of identified dictionary atoms where we declare âm a success-

ful estimate of an when 1 −
∣

∣âH
m · an

∣

∣ > 0.99. We compare

the MOD [9] and the K-SVD [10] algorithm with their tensor

extensions T-MOD and K-HOSVD proposed in this paper.

In Figure 1 we use T = 500 training samples and show

the performance vs. the number of iterations NIt. We initial-

ize the algorithms with a randomly drawn dictionary, i.e., no

prior knowledge of the dictionaries is assumed. The results

are averaged over 200 Monte Carlo trials. For Figure 2 we

vary T , fix the number of iterations to NIt = 80, and av-

erage over 100 trials. Moreover, we initialize the dictionary

estimates via

Â
(r) = A

(r) +
√

PE ·E(r), r = 1, 2 (12)

where E(r) is drawn from an i.i.d. zero mean variance one

Gaussian random process and PE = 0.1. This corresponds to

a situation where coarse initial knowledge of the dictionary is

available. The simulation results verify that the tensor-based

dictionary learning algorithms are able to identify more dic-

tionary atoms, they converge faster, and they require fewer

training samples. Based on the examples we investigated it

seems that the T-MOD algorithm outperforms the K-HOSVD.

However, more studies are needed to confirm whether this is

true in general.

5. CONCLUSIONS

In this paper, we have studied the problem of learning sparsi-

fying overcomplete dictionaries for the case where these are

multidimensional and separable. We have shown that this

problem has a multidimensional structure that can be conve-

niently expressed using tensors. Based on this formulation,

we have extended existing popular LS-based dictionary learn-

ing algorithms and derived two new tensor-based dictionary

learning schemes, the T-MOD and the K-HOSVD algorithm.

Based on numerical results, we have shown the superior per-

formance of these algorithms which stems from the fact that

they explicitly exploit the multidimensional structure.
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