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ABSTRACT

Structures such as seawalls, levees and dikes prevent low ly-

ing land from flooding. The structural health of these con-

structions is critical and needs to be maintained. In this paper,

we present a data-driven approach that uses the information of

different in-situ measurements to detect structural anomalies

at an early stage. Our approach is based on system identifica-

tion, in which the dike is modeled as a single-input, multiple-

output, linear system whose parameters can be learned based

on training data. A statistical test is then deployed to per-

form a systematic detection of anomalies. We demonstrate

the performance of the proposed approach on real data from

an experimental dike setup.

Index Terms— Dike monitoring, anomaly detection, sys-

tem identification

1. INTRODUCTION

The loss of dry land due to rising water levels (upto 3.1

mm/year [1]) originating from climate change can be pre-

vented or slowed down by building water infrastructure, such

as seawalls, levees and dikes. The exposure to a variety of

harsh weather conditions such as extremely high and ex-

tremely low temperatures, drought, wind and rain affect the

stability of the structures and can lead to dike breach [2]. A

protection of the dike from flooding requires regular moni-

toring of the dikes whereby two main types of dike breaches

can be identified: the first class is dike weakening, e.g. due

to external erosion from the outside layers towards the inside,

whereas in the second class, weakening takes place from the

inside towards the outside (e.g. piping, internal erosion) [3].

The first type can be easily detected by external dike inspec-

tion, but in the second case, the failure remains invisible from

the outside. At present, various models characterizing a spe-

cific failing type have been suggested. The process of piping

was described by Bligh and Lane’s empirical rule [4], [5].

Other models include the Sellmeijer model [6], Bishop [7],

Spencer [8], Janbu [9] and Morgenstern-Price [10]. Although

these models can accurately describe the characteristics of

various failure types, linking them with real dike situations is

not straightforward and depends on several parameters, such

as exact composition of the soil, the load acting on the dike

at a given time, the kind of vegetation on the dike, dike repair

works, weather conditions, etc. The problem of predicting

a dike failure is, therefore, far from solved. The increasing

advances in sensor design and sensor data analysis [11] have

paved the way to automatically monitor the dike stability and

predict the failing types and failing time. First attempts to

apply signal processing methods for environmental monitor-

ing and flood protection were neural networks and clustering

methods [12]. The concept of abnormal behavior detection

for early warning systems has been applied for the first time

in [2] where seasonal training was performed to learn normal

dike behavior.

The contribution of this paper is the presentation of a data-

driven approach to detect dike anomalies. In this approach,

a healthy dike model is learned using system identification

concepts. In order to estimate the dike parameters an ordi-

nary and a regularized least-squares estimator are compared.

The newly observed data, after the training duration, is val-

idated against the learned model to detect deviations of the

current data from a normal dike behavior, or in other words,

to detect an anomaly. Finally, a statistical test is used for auto-

matic anomaly detection. The paper is structured as follows.

Section 2 describes the experimental setup considered in this

paper. In Section 3 the system and signal model are presented

followed by the details of our proposed approach in Section

4. Results using experimental data for dike anomaly detection

are shown in Section 5; conclusions are drawn in Section 6.

2. EXPERIMENTAL SETUP AND USED DATA SET

In August and September, 2012, a series of tests called All-

In-One Sensor Validation Test (AIO-SVT), also known as

the IJkdijk experiment were conducted in Booneschans, the

Netherlands [13][14]. Test dikes were built as can be seen

in Fig. 1. Multiple sensors were embedded into the dike at

strategic locations to monitor dike stability. The main purpose

of the experiment was to test the power of signal processing

methods to draw conclusions about the state of the dike in

terms of its stability and predict dike failures through contin-

uous sensor monitoring and analysis of the generated sensor

data. This paper will focus on the data taken from the west

dike which was designed to breach towards the end of the

experiment due to a piping that developed due to soil erosion
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underneath the dike. Of all the sensors installed in the west

Fig. 1: Aerial view of the IJkdijk experiment showing the

west dike. Courtesy: Stichting IJkdijk.

dike during the experiment, the ones that are considered here

are a water level sensor in the reservoir (corresponding to the

left side on Fig. 2) and five GeoBead (GB) sensors installed

at the ground level of the dike at the dry land side, measuring

pore pressure.

3. SYSTEM AND SIGNAL MODEL

In this section we introduce the signal model used through-

out the rest of the paper. We hereby consider the dike as

a linear, single- input, multiple-output system that has wa-

ter level as the input and pore pressure at different locations

inside the dike as the outputs. The sampled pore pressure sig-

nal at a given location i is denoted by yi(m), m = 1, 2....M,

with M being the total number of samples and i = 1, 2....L,

where L denotes the total number of pore pressure sensors.

Similarly, the water level signal is denoted by x(m), with

m = 1, 2, ...,M . Their vector notations are considered as

follows:

yi = [yi(1), yi(2), . . . , yi(M)]T . (1)

x = [x(1), x(2), . . . , x(M)]T . (2)

All pore pressure and water level signals are sampled uni-

formly at the same time intervals. In a first-order approach,

dikes can be assumed to behave in an approximately linear

manner in normal conditions [15]. Therefore we consider the

relationship between the pore pressure and the water level to

be linear. In the case of localized failure types like piping,

the pressure outputs can be considered uncorrelated to each

other. We hereby consider a grey-box model [16] to represent

the relations between the input and each of the outputs shown

in Fig. 2. The water level on the reservoir side, when raised

to a considerable level, seeps through the various soil types

in the dike, and raises the pore pressure at locations through-

out the dike. The pressure at a given location, observed by

Fig. 2: Symbolic representation of the dike as a grey-box sys-

tem, considering one of the outputs.

one of the GeoBead (GB) sensors, like GB 5, in the Fig. 2,

at a sample m would depend on m,m − 1, . . . ,m − nb + 1
current and past water level samples and m− 1, . . . ,m− na

pressure samples. We propose representing this input-output

relationship by an Auto Regressive Model with Exogenous

Input (ARX) [17] in a single- input, multiple- output struc-

ture as seen in Fig. 3. Thus, the system equation between the

water level x(m), observed at the water side of the dike, and

the pore pressure yi(m) is given by

Fig. 3: The dike as a single input, multiple output system.

Ai(q, θ)yi(m) = Bi(q, θ)x(m− nk) + ei(m) (3)

where A and B are polynomials, with q being the shift op-

erator, θ = [1, a1, . . . , ana
, b1, . . . , bnb+1]

T , nk is the input

output delay in the system, ei(m) is zero mean, white noise.

4. PROPOSED ANOMALY DETECTOR

This section details our proposed approach for dike anomaly

detection that is also depicted in Fig. 4. The process of

anomaly detection consists of three major steps, namely, sys-

tem identification, prediction, and a statistical test.

4.1. System Identification

A section of the data for which the dike is under healthy oper-

ation is selected as the training interval. This training interval
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Fig. 4: Proposed anomaly detection process.

is supposed to be representative for the typical (healthy) situ-

ations a dike will encounter. Given a training set of the input

and output observation data {yi(m);x(m),m = 1, . . . , N},

the objective is to find the polynomials Ai(q, θ) and Bi(q, θ)
for the assumed ARX model (3). The predictor for the system

model is the output estimate ŷi(m|θ). The least-squares esti-

mation technique is used for model estimation with the cost

function

VN (θ) =
1

N

N∑

m=1

|yi(m)− ŷi(m|θ)|2 (4)

and parameter estimate

θ̂N = argmin
θ

VN (θ) (5)

where the subscript N denotes the number of samples in the

training set. The estimation of the model practically is always

erroneous with the two sources being bias and variance. Bias

is introduced if the model structure is not flexible enough to

contain a correct description of the system whereas variance

is a result of the measurement noise in the data [18]. With

an increase in the number of parameters, the flexibility of the

model increases, the bias of the estimate decreases and the

variance of the estimate increases. We propose to not directly

use Equation (5) but to consider regularization to manage a

bias-variance trade off. Consider the case of linear regression,

y = gθ + e (6)

where y is the output vector and g is the regression vector.

The regularized least- squares solution is

θ̂R = argmin
θ

|y − gθ|2 + θTP−1θ (7)

where P is a positive semi-definite matrix. Considering

RN = g
T
g, Equation (7) becomes

θ̂R = (RN + P−1)−1RN θ̂LS . (8)

There are many methods available to estimate the appropriate

kernel P . Extending this to the ARX modeling problem, the

ARX model, using Equation (3), (ignoring the input - output

delay, nk) can be rewritten as

yi(m) =− a1yi(m− 1)− · · · − ana
yi(m− na) + b1x(m)

+ b2x(m− 1) + · · ·+ bnb
x(m− nb + 1)

= g
T

a (m)θa + g
T

b (m)θb

= g
T (m)θ.

(9)

Thus the ARX model is a linear regression, to which the same

idea of regularization can be applied. For the results described

below, a tuned/correlated (TC) kernel is used to find an appro-

priate P . More details about this kernel can be found in [19].

4.2. Prediction

Given the parameter estimate θ̂ as obtained per Equation (7)

it is used to estimate the current ŷ(m|θ) taking into account

a total of nb past samples and the current sample of the input

signal and a total of na past samples of the output signal as

ŷi(m|θ̂R) =
Bi(q, θ̂

R)

Ai(q, θ̂R)
x(m) +

1

Ai(q, θ̂R)
ei(m). (10)

4.3. Statistical Test

We propose testing for a dike anomaly using a statistical test

based on the residual power between the observed and pre-

dicted pressure data, which is denoted as ri(m):

ri(m) = (yi(m)− ŷi(m))2. (11)

Consider the following composite hypotheses:

H0 : Dike is in a healthy state

H1 : Dike is in an unhealthy state
(12)

As it is practically infeasible to obtain data to construct the

conditional distribution p(ri(m)|H1); a simple test based

only on p(ri(m)|H0) with threshold τi is formulated as

p(ri(m)|H0)
H1

≶
H0

τi. (13)

The test is done for all i and all m.

5. RESULTS

In this section, we will present the results using system iden-

tification techniques for dike anomaly detection with the ex-

perimental setup described in Section 2. First, a comparison

between the ordinary (5) and regularized least-squares solu-

tion (7) will be made to estimate the parameter vector θ of

the ARX model. Second, the output of the statistical test
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ŷR1 , MSE = 0.565
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Fig. 5: (a) Pressure estimate over the training period for an

ARX model estimated via least- squares and regularized least-

squares (b)-(f) The predicted outputs over the whole duration

using ARX modeling with regularization ŷR
i

and without reg-

ularization ŷLS
i

for GB 1 to 5

as per Equation (13) will be shown. The data from each of

the five pressure sensors is processed independently of the

other sensors. Fig. 5(a) exemplary shows the pressure esti-

mate in the training duration (N = 1000 samples). As ex-

pected, the model estimated using the ordinary least-squares

estimator has a higher variance. On the other hand, the regu-

larized least-squares estimator results in a lower mean-square

error (MSE) at the cost of introducing a small bias. In the

Figs. 5 (b) - (f) the estimated θ, obtained from the N = 1000
training samples is used for prediction. Again, it can be seen

that the regularized least-squares estimator has smaller MSE

and follows the actual system output more closely than the

ordinary least-squares estimator. Further, both predicted out-

puts start deviating from the actual output starting at around

3000 < m < 4000. A systematic test as per (13) is consid-

ered and depicted in Figs. 6 (a) - (e). Here, the threshold

τi was chosen based on a p-value of 1%. The tests show

an anomalous behavior around sample 3297 (averaged over

different sensors), which matches the physical anomalous be-

havior observations during the experiment.
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Fig. 6: (a)-(e) Residual power and thresholds for the sensors.

6. CONCLUSION

We have presented a method for dike anomaly detection that

is purely data-driven, where no geological and/or hydrologi-

cal knowledge is needed. It is based on system identification

and learns the system parameters of a healthy dike situation

and detects deviations from them. We have demonstrated that

regularized methods for estimating the parameters of an ARX

model improve accuracy and allow for a bias-variance trade

off. Experimental results have shown that the proposed ap-

proach was able to detect failure due to piping.
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