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Abstract—Simultaneously estimating position and velocity of

moving targets using only phase information from single-channel

SAR data is impossible. This paper defines classes of equivalent

target motion and solves the GMTI problem up to membership

in an equivalence class using single-channel SAR phase data. We

present a definitions for endo- and exo-clutter that is consistent

with the equivalence classes, and show that most target motion

can be detected, i.e. the set of endo-clutter targets is very small.

We exploit the sparsity of moving targets in the scene to develop

an algorithm to resolve target motion up to membership in

an equivalence class, and demonstrate the effectiveness of the

proposed technique using simulated data.

Index Terms—Radar signal processing, synthetic aperture

radar, motion detection, sparse signal recovery

I. INTRODUCTION

This paper studies the problem of recovering both the
positions and velocity vectors of moving targets in a distant
ground scene, a problem referred to as ground moving target
indication (GMTI). A variety of radar-based approaches to
GMTI have been proposed including multi-channel phased
arrays [1]–[4], displaced phase center antennas [5], and space-
time adaptive processing [6]–[8]. This paper focuses on the ex-
ploitation of single-channel synthetic aperture radar (SC-SAR)
data for the GMTI problem. Single-channel SAR systems are
of interest because they are more available and more readily
deployable on unmanned aerial vehicles and satellites where
size, weight and power are critically important.

Synthetic aperture radar (SAR) systems move a single
antenna through space to mimic the effect of sampling echo
returns using a large distributed array of antennas. Processing
algorithms applied to collected SAR data can produce near-
photographic quality, highly-focused imagery of a distant
scene [9]–[11]. These imaging algorithms assume that objects
in the scene are stationary over the collection interval. If the
scene contains moving objects, then these objects can appear
in the image to be defocused and displaced to an extent that
depends on the speed and direction of the motion [12]–[14].

A. Relation to Prior Work

Techniques for single-channel SAR GMTI have been pro-
posed by a number of authors. Fineup [15] used image “sharp-
ness” as a metric to estimate target motion. Ouchi [16] studied
how target motion reveals itself in sequences of multi-look

SAR images. Kirscht [17] estimated target velocity by watch-
ing target position and signal amplitude across a sequence
of SAR images. Bioucas-Dias et al [18] constructed matched
filters that account for both amplitude and phase of echoes
returned from moving targets. Werness et al [19] assumed the
presence of three prominent point scatters on each target to
estimate its motion. Barbarossa [20] applied optimal maximum
likelihood schemes for detecting and focusing moving targets.
Samczynski et al [21] applied spectral estimation to estimate
the range component of velocity and applied a variation on
map-drift auto-focus to obtain the along-track component.
Marques et al [22] applied digital spotlighting to separate
multiple moving targets before applying motion estimation.

A result of Chapman et al [13] establishes ultimate limits
on moving target detection and estimation using only phase
measurements from a single-aperture SAR. SAR inherently
measures the two-way range to a target, and for every station-
ary target there exist many moving targets having the same
range history, and therefore none of these movers can be
distinguished from the stationary target using the phase history
alone [13]. Thus there are equivalence classes of moving
and stationary objects that are indistinguishable. Winkler [14,
Chapter 5] provides nice graphical illustrations of these equiv-
alence classes and proposes a single-channel SAR GMTI
algorithm that uses contextual information such as roadways
to remove the class ambiguity. Marques [23] also uses prior
knowledge of the road network.

B. Contributions of This Paper

The present paper shows that most target motion is actually
distinguishable from the static background. However, there is
ambiguity in determining both location and velocity simultane-
ously. A technique is proposed to recover moving targets up to
membership in an equivalence class. The proposed technique
simultaneously estimates an image of the stationary back-
ground of the scene as well as the moving target information.
The sparsity of moving targets in the scene is exploited in the
recovery. The effectiveness of the method is evaluated using
simulated data.

II. DATA MODEL

This section develops a model for the echo return from a
moving point target. Though this discussion follows a spot-
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light mode SAR collection scheme [24], the results apply
equally well to strip-map mode SAR [14].

The transmitted and measured echo return signals are given
by
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is the pulse duration, ↵ is the LFM chirp rate, and
rect(t) = 1 for |t|  1/2 and is zero otherwise. The variable
A in (2) models any change in amplitude due to scattering
and path loss. The two-way time delay ⌧ of the echo return
is related to the SAR-to-target range R by

⌧ = 2R/c, (3)
where c is the speed of light.

In spot-light SAR, an echo return from an imaginary target
in the scene center is used as a reference for de-chirping the
received signal [24]. If ⌧

c

is the round trip delay to scene-
center, then the received signal is mixed with
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After low pass filtering and removing the residual video
phase [24], we obtain
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Finally, the radar receiver samples u(t). Due to relative motion
between the SAR and points in the scene, the delays ⌧

c

and
⌧ vary with time as discussed below.

For simplicity assume that the SAR platform motion is
straight and level with a constant velocity vector vSAR =

(0, vSAR, 0). Then the SAR trajectory is given by
xSAR(t) = (0, tvSAR, h), (7)

and the nadir track of the SAR is the y-axis. At time t = 0,
the SAR passes through the point (0, 0, h) lying directly above
the coordinate origin.

Assume a point target moves along the ground with constant
velocity vector vtarget = (v

x
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, 0). The time-varying position
of the target is given by

xtarget(t) = (x0 + tv
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, 0), (8)
where (x0, y0, 0) is the target position at time t = 0.

Define the range vector
r(t) = xtarget(t)� xSAR(t), (9)

= (x0 + tv
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, y0 + t(v
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then the SAR-to-target range history is given by the positive
root of
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The scene center is an imaginary stationary point at
(x

c

, y

c

, 0). The SAR-to-scene center range history R

c

(t) is
given by (11) with (x
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, 0, 0) substituted for (x0, y0, vx, vy)

in the calculation of (A,B,C).
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Fig. 1. Left: Position circles having radii
p
C � h

2. Right: Velocity circles
having radii

p
A.

Combining the range histories with (3), the phase history
(6) can be written as

'(t) = (f + 2↵t)(2/c)[R

c

(t)�R(t)]. (15)
Given the coordinates of the scene center (x

c

, y

c

), the moving
target parameters (x0, y0, vx, vy), and the SAR altitude h and
speed vSAR, (15) and (5) can be evaluated at sample times to
simulate measured single-channel SAR data.

III. EQUIVALENCE MOTION CLASSES FOR
SINGLE-CHANNEL SAR GMTI

Equations (12-14) define a many-to-one map
g : (x0, y0, vx, vy) 7! (A,B,C). (16)

The inverse image of a point (A,B,C) is defined to be the
set g

�1
(A,B,C) = {(x0, y0, vx, vy) : g(x0, y0, vx, vy) =

(A,B,C)}. We call this set an equivalence motion class
because it describes different combinations of starting posi-
tions (x0, y0) and velocities (v

x

, v

y

) that map to the same
(A,B,C). Because the range history R(t) in (11) depends
upon position and velocity through (A,B,C), all points in an
equivalence class produce the same range history R(t) and the
same measurement u(t) in (5) also.

The ambiguity in the single-channel SAR GMTI problem
arises because the inverse image of (A,B,C) contains many
points (x0, y0, vx, vy). To see this note that for fixed (A,B,C),
(14) defines a circle in (x0, y0)-space with radius

p
C � h

2

centered at the origin. Call this the “position circle”. Equation
(12) describes a circle in (v

x

, v

y

)-space with radius
p
A

centered at the point (0, vSAR). Call this the “velocity circle”.
Figure 1 illustrates these circles. The 4-tuple (x0, y0, vx, vy)

characterizes target motion. Equivalent targets (belonging to
the same equivalence class) have starting positions on the same
position-circle and velocities on the same velocity circle.

Equation (13) is an inner product between the starting
position (x0, y0) and the shifted velocity vector (v

x

, v

y

�vSAR)

and may be expressed as
B =

p
A

p
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2
cos ✓, (17)

where ✓ is the angle between (x0, y0) and (v

x

, v

y

� vSAR).
To be in the same equivalence class, this angle is a constant.
Because cosine is an even function of ✓, two velocity vectors
pair with each position: one making an angle ✓ with (x0, y0)

and another making an angle �✓. As the point (x0, y0) moves
around the position-circle, the corresponding velocity vectors
(v

x

, v

y

) move around the velocity circle.
An equivalence class may be constructed by choosing one
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Fig. 2. Illustration of three equivalence motion classes. The solid black
arcs are position circles. The dashed box is the ground scene of interest. The
vectors show starting positions (x0, y0) and velocity vectors (v

x

, v

y

) that
produce the same (A,B,C).

of the four variables x0, y0, vx, vy and computing the other
three for a fixed A,B, and C in equations (12-14), assuming
that h and vSAR are also known and fixed. For example, let
(A,B,C) be fixed and choose y0 2 [�
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2
,

p
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2
].

Then compute x0 =
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0 . The positive square root

may be taken because the SAR antenna pattern illuminates
only the positive-x half plane. Next assume y0 6= 0 and solve
(13) for v

y
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v

y

� vSAR = (B � v

x

x0)/y0. (18)
Substitute this into (12) and solve the quadratic equation
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for v
x

, yielding two solutions that can be substituted back into
(18) to compute corresponding values for v

y

. Repeating this
procedure for every y0 in the interval �

p
C � h

2  y0 p
C � h

2 yields the equivalence motion class for the point
(A,B,C). Figure 2 illustrates several example equivalence
classes.

Though not necessary, physical constraints may be intro-
duced to restrict the size of the motion classes. For example,
the coordinates (x0, y0) may be limited to the ground region
that is illuminated by the antenna beam pattern. We may
also choose a maximum speed of interest and constrain the
velocities of interest to be contained in the disk {(v

x

, v

y

) :q
v

2
x

+ v

2
y

 vmax}. An example rectangular ground region
and a velocity disk are illustrated in Fig. 3.

GMTI is interested in moving targets. Therefore, echo
returns from the stationary background scene are considered to
be clutter. Because of the ambiguity inherent in single-channel
SAR GMTI, some moving targets are indistinguishable from
stationary targets. Therefore, we adopt the following defini-
tions.
• Static-clutter: the stationary (zero velocity) background
scene.
• Endo-clutter: all moving targets that lie in an equivalence
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Fig. 3. The domain (top) and image (bottom) of the mapping g. Top: Portions
of several position and velocity circles are overlaid on top of the ground region
of interest (shaded square) and the velocities of interest (shaded disk). Bottom:
The inset surface is the set of static/endo-clutter equivalence classes.

class containing a stationary target.
• Exo-clutter: all moving targets that do not have stationary
targets in their equivalence classes.
Note that static-clutter and endo-clutter moving targets are
members of the same equivalence classes. One naturally won-
ders about the respective sizes of the sets of static/endo-clutter
and exo-clutter targets. To answer this question, consider the
image under g of a rectangular scene of interest and (Cartesian
product) the velocity disk illustrated in Fig. 3. The image of
g is the volume bounded below by the blue surface shown
and by the top and back faces which are flat and not shown.
The top and back of the image of g have been left open in
order to see the set of static/endo-clutter equivalence classes,
which fall on the two-dimensional embedded surface (black).
We can see that the volume of the static/endo-clutter is zero.
Except for a set of measure zero, moving targets can be
detected using a single-channel SAR! However, the exact
position and velocities of the movers can only be determined
up to membership in an equivalence motion class. The next
section describes an algorithm for estimating motion class
membership.

IV. SC-SAR GMTI ON EQUIVALENCE CLASSES

Let the vector d be all the measured data samples obtained
over a collection interval using a single-channel SAR system.
Often such samples are arranged in a two-dimensional array
with one axis representing (fast time) sample index and the
other representing (slow time) pulse index. Arrange all these
samples into the one-dimensional vector d in some suitable or-
der. Let u(x0, y0, vx, vy) be a vector constructed by sampling
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the point target response u(t) in (5), and assume that the same
set of sample times are used to construct u(x0, y0, vx, vy)

as were used in the measured vector d. The response u(t)

depends on the position and velocity of the target. Therefore,
the additional notation is included. Let a(x0, y0, vx, vy) be the
strength of the echo return from a target at (x0, y0) moving
with velocity (v

x

, v

y

). Assuming the principle of superposition
holds, the measurement d is a linear combination of point
target responses

d =

X

x0,y0,vx,vy

u(x0, y0, vx, vy)a(x0, y0, vx, vy) + n, (20)

where a Gaussian noise vector n has been included. The sum
is over all ground positions and possible velocities. Because
of equivalence classes, u(x0, y0, vx, vy) = u(x

0
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0
0, v

0
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)

whenever the target positions and velocities belong to the same
equivalence class, i.e. g(x0, y0, vx, vy) = g(x

0
0, y

0
0, v

0
x

, v

0
y

) =

(A,B,C). Therefore, there are repeated terms in (20). A more
parsimonious parameterization for the target response uses
the coordinates of the equivalence class (A,B,C). With this
simplification, (20) becomes

d =

X

A,B,C

u(A,B,C)a(A,B,C) + n = [S | M]


s

m

�
+ n,

(21)
where the columns of matrix S consist of all those responses
u(A,B,C) corresponding to the static-clutter and their equiv-
alence classes which contain all endo-clutter movers. The
columns of matrix M consist of all u(A,B,C) for equivalence
classes of exo-clutter movers.

The background scene may be described as being dense
in the sense that the radar receives echo returns from most
locations in the scene. The number of moving targets in the
scene is relatively small. These working assumptions are used
to estimate the parameters s and m in the model (21) using
the following regularized least-squares problem:

min.
s,m

kd� Ss�Mmk2 + �kmk0, (22)

where kmk0 is the number of non-zero elements in m. The
problem in (22) seeks s and m that provide a good fit to
the measurements d such that m is a sparse vector, which
agrees with the assumption that there are a small number of
moving targets in the scene. The user-selectable parameter �

emphasizes the importance of sparsity in the solution: large
(small) values for � make m more (less) sparse.

It is well known from the theory of compressive sensing
and sparse reconstruction [25] that the zero-norm regularized
problem (22) is NP hard, and it is common to substitute a
one-norm leading to the relaxed problem

min.
s,m

kd� Ss�Mmk2 + �kmk1, (23)

yielding only approximations to the true solution to (22).
Solving this problem first for s yields s = S

†
(d � Mm).

Substituting this back into (24) yields the reduced problem
min.
m

kP?
S (d�Mm)k2 + �kmk1, (24)

where P

?
S projects orthogonally onto the left null space of S.

We assume that S is a tall matrix so that P?
S 6= 0.

Fig. 4. Simulation result showing five reconstructed static point targets and
the estimated equivalence class (red) corresponding to the true moving target
(blue).

V. SIMULATION RESULTS

Data for a small scene consisting of five stationary point
targets and one moving point target was simulated. The L1-
regularized least-squares problem in (24) was solved for m

and then s was computed. The background grayscale image
in Fig. 4 shows the estimated static scene; the five point targets
are clearly reconstructed. The true initial position and velocity
vector of the moving target is shown using the blue vector.
Only one equivalence class was active in the solution for m.
This equivalence class is depicted in Fig. 4 as the family of
red vectors. The red line is a small piece of the position circle
for this equivalence class. It appears as a straight line because
the scene is very small compared to the radius of the position
circle. Notice that the velocity vector of the mover and its
range are very well determined, but its azimuth (y) position is
not well resolved.

VI. CONCLUSION

This paper showed that the set of endo-clutter moving
targets is quite small (i.e., it has measure zero), and most
moving targets are exo-clutter (i.e., they can theoretically
be discriminated from the static scene using single-channel
SAR phase history data). However, moving targets can not
always be differentiated from one another. This paper defined
equivalence classes of moving targets and gave a mathematical
problem formulation leads to simultaneous estimation of the
static scene and moving target information. The moving targets
were identified up to their membership in an equivalence
class. The stability of this estimation problem is related to
the sampling in the space of equivalence classes of moving
targets. Part of the future work aims to understand the width
of the main lobe of moving target point responses in this space.
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