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ABSTRACT

Compressed Sensing (CS) is an effective approach to reduce the re-
quired number of samples for reconstructing a sparse signal in an
a priori basis, but may suffer severely from the issue of basis mis-
match. In this paper we study the problem of simultaneously re-
covering multiple spectrally-sparse signals that are supported on the
same frequencies lying arbitrarily on the unit circle. We propose
an atomic norm minimization problem, which can be regarded as a
continuous counterpart of the discrete CS formulation and be solved
efficiently via semidefinite programming. Through numerical ex-
periments, we show that the number of samples per signal may be
further reduced by harnessing the joint sparsity pattern of multiple
signals.

Index Terms— compressed sensing, basis mismatch, atomic
norm, joint sparsity

1. INTRODUCTION

Compressed Sensing (CS) [1, 2] asserts a signal can be recovered
from a small number of linear measurements if it can be regarded
as a sparse or compressible signal in an a priori basis. An impor-
tant consequence is its application in analog-to-digital conversion
and spectrum estimation, where the signal of interest is spectrally
sparse, composing of a small number r of frequency components. It
is shown that if the frequencies of a signal all lie on the DFT grid,
the signal of length n can then be recovered exactly from a random
subset of O(r log n) samples with high probability [3]. However, in
reality the frequencies of a signal never lie on a grid, no matter how
fine the grid is; rather, they are continuous-valued and determined
by the mother nature, e.g. a point spread function. Performance de-
generation of CS algorithms is observed and studied in [4–6] when
a “basis mismatch” between the actual frequencies and the assumed
grid occurs, and many algorithms have been proposed to mitigate the
basis mismatch effect [7, 8].

More recently, several approaches have been proposed to as-
sume away the need for an a priori basis while maintaining the capa-
bilities of subsampling in CS with rigorous performance guarantees.
One recent approach is via atomic norm minimization [9], which is a
general recipe for designing convex solutions to parsimonious model
selection. It has been successfully applied to recover a spectrally-
sparse signal from a subset of its consecutive samples [10] or ran-
domly selected samples [11]. In particular, Tang et. al. showed that a
spectrally-sparse signal can be recovered from O(r log n log r) ran-
dom samples with high probability when the frequencies satisfy a
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mild separation condition [11]. This framework has also been ex-
tended to handle higher-dimensional frequencies [12]. Another ap-
proach is proposed in [13, 14], where the problem is reformulated
into a structured matrix completion inspired by matrix pencil [15].
For this approach, it is shown that O(r log2 n) randomly selected
samples are sufficient to guarantee perfect recovery with high prob-
ability under some mild incoherence conditions and the approach
is amenable to higher-dimensional frequencies. With slightly more
samples, both approaches can recover off-the-grid frequencies at an
arbitrary precision. We refer interested readers for respective papers
for details.

In this paper, we study the problem of simultaneously recover-
ing multiple spectrally-sparse signals that are supported on the same
frequencies lying arbitrarily on the unit circle. With Multiple mea-
surement Vectors (MMV) in a CS framework, it is shown to further
reduce the required number of samples [16–21] by harnessing the
joint sparsity pattern of different signals. Our proposed algorithm
can be regarded as a continuous counterpart of the MMV model in
CS, and is based on atomic norm minimization which can be solved
efficiently using semidefinite programming. We characterize a dual
certificate for the optimality of the proposed algorithm. Compar-
isons are given for joint sparse recovery between conventional CS
algorithms and the proposed algorithm through numerical experi-
ments, which indicate that the number of samples per signal can be
reduced by harnessing the joint sparsity pattern of multiple signals
using atomic norm minimization.

The rest of the paper is organized as below. Section 2 describes
the problem formulation. Section 3 formulates the atomic norm min-
imization problem for joint sparse recovery. Section 4 gives numeri-
cal experiments and we conclude in Section 5. Throughout the paper,
we use bold letters to denote matrices and vectors, and unbolded let-
ters to denote scalars. The transpose is denoted by (·)T , the complex
conjugate is denoted by (·)∗, and the trace is denoted by Tr(·).

2. PROBLEM FORMULATION AND BACKGROUNDS

Let x = [x1, . . . , xn]
T ∈ Cn be a spectrally-sparse signal with r

distinct frequency components, which can be written as

x =
r∑

k=1

cka(fk) ! V c, (1)

where each atom a(f) is defined as

a(f) =
1√
n

[
1, ej2πf , . . . , ej2πf(n−1)

]T
, f ∈ [0, 1). (2)

The Vandermonde matrix V is given as V = [a(f1), . . . ,a(fr)] ∈
Cn×r , and the coefficient vector c = [c1, . . . , cr]

T ∈ Cr . The set of
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frequencies F = {fk}rk=1 can lie anywhere on the unit circle, such
that fk is continuously valued in [0, 1).

In an MMV model, we consider L signals, stacked in a matrix,
X = [x1, . . . ,xL], where each xl ∈ Cn, l = 1, . . . , L, shares the
same set of frequencies and is composed of the form of (1) as

xl =
r∑

k=1

ck,la(fk) = V cl, (3)

with cl = [c1,l, . . . , cr,l]
T . Hence X can be expressed as

X = V C, (4)

where C =
[
c1 · · · cL

]
∈ Cr×L. Assume we observe the same

subset of entries of each xl, and denote the location set of observed
entries by Ω, with m = |Ω|. When there is no noise, the observations
can be given as

ZΩ = PΩ(X) ∈ Cm×L,

where PΩ is a projection operator that only preserves the rows of X
indexed by Ω.1

The traditional CS approach assumes that xl’s are sparse in an a
priori determined DFT basis or DFT frame F ∈ Cn×d (d ≥ n), and
they share the same sparsity pattern. Hence, the signal X is modeled
as

X = FΘ, (5)
where Θ = [θ1, . . . ,θd]

∗ ∈ Cd×L, and the number of nonzero
rows of Θ is small. Define the group sparsity ℓ1 norm of Θ as
∥Θ∥2,1 =

∑d
i=1 ∥θi∥2. A convex optimization algorithm [17] that

motivates group sparsity can be posed to solve the MMV model as

Θ̂ = argminΘ ∥Θ∥2,1 s.t. FΩΘ = ZΩ, (6)

where FΩ is the subsampled DFT basis or DFT frame on Ω. The
signal then is recovered as X̂ = F Θ̂. However, when the frequen-
cies F are off-the-grid, the model (5) becomes highly inaccurate due
to spectral leakage along the Dirichlet kernel, making (6) degrades
significantly in performance. We will compare against this conven-
tional approach with our proposed algorithm in Section 4.

3. ATOMIC NORM MINIMIZATION FOR MMV MODELS

In this section we develop the atomic norm minimization algorithm
for solving the MMV model with spectrally-sparse signals. We first
define an atom as

A(f, b) = a(f)b∗, (7)
where f ∈ [0, 1), b ∈ RL satisfying ∥b∥2 = 1, and the set of atoms
as A = {A(f, b)|f ∈ [0, 1), ∥b∥2 = 1}. Define

∥X∥A,0 = inf
r

{
X =

r∑

k=1

ckA(fk, bk), ck ≥ 0

}
.

as the smallest number of atoms to describe X . Our goal is thus to
minimize ∥X∥A,0 that satisfies the observation, given as

min ∥X∥A,0 s.t. ZΩ = PΩ(X). (8)

It is easy to show that ∥X∥A,0 can be represented equivalently as

∥X∥A,0 = inf
u,W

{
rank(toep(u))

∣∣∣
[
toep(u) X
X∗ W

]
≻ 0

}
,

1We remark that, this restriction of fixing the observation pattern across
different signals, is actually unnecessary for the proposed algorithm.

where toep(u) is the Toeplitz matrix generated by u. Hence (8)
is NP-hard. We will alternatively consider the convex relaxation of
∥X∥A,0, defining the atomic norm [9] of X as

∥X∥A = inf {t > 0 : X ∈ t conv(A)}

= inf

{
∑

k

ck
∣∣∣X =

∑

k

ckA(fk, bk), ck ≥ 0

}
. (9)

The atomic norm of a single vector xl defined in [11] becomes a
special case of (9) for L = 1. We propose to solve the following
atomic norm minimization algorithm:

X̂ = argminX ∥X∥A s.t. ZΩ = PΩ(X). (10)

3.1. Semidefinite Program Characterization

We now prove the following equivalent semidefinite program (SDP)
characterization of ∥X∥A, showing that (10) can be solved effi-
ciently using off-the-shelf SDP solvers.

Theorem 1. The atomic norm ∥X∥A can be written equivalently as

∥X∥A = inf
u∈Cn,W∈CL×L

{1
2
Tr(toep(u)) +

1
2
Tr(W )

∣∣∣
[
toep(u) X
X∗ W

]
≻ 0

}
.

Proof. Denote the value of the right hand side as ∥X∥T . Suppose
that X =

∑r
k=1 cka(fk)b

∗
k, there exists a vector u such that

toep(u) =
r∑

k=1

cka(fk)a(fk)
∗,

by the Vandermonde decomposition lemma [22]. It is obvious that
[
toep(u) X
X∗ ∑r

k=1 ckbkb
∗
k

]

=

[∑r
k=1 cka(fk)a(fk)

∗ ∑r
k=1 cka(fk)b

∗
k∑r

k=1 ckbka(fk)
∗ ∑r

k=1 ckbkb
∗
k

]

=
r∑

k=1

ck

[
a(fk)
bk

] [
a(fk)

∗ b∗k
]
≻ 0,

and
1
2
Tr(toep(u)) +

1
2
Tr(W ) =

r∑

k=1

ck = ∥X∥A,

therefore ∥X∥T ≤ ∥X∥A. On the other hand, suppose that for any
u and W that satisfy

[
toep(u) X
X∗ W

]
≻ 0,

with toep(u) = V DV ∗, D = diag(di), di > 0. It follows that X
is in the range of V , hence X = V B with the columns of BT given
by bi. Since W is also PSD, W can be written as W = B∗EB
where E is also PSD. We now have
[
toep(u) X
X∗ W

]
=

[
V

B∗

] [
D I
I E

] [
V ∗

B

]
≻ 0,

which yields [
D I
I E

]
≻ 0
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and E ≻ D−1 by the Schur complement lemma. Now observe

Tr(W ) = Tr(B∗EB) ≥ Tr(B∗D−1B)

= Tr(D−1BB∗) =
∑

i

d−1
i ∥bi∥2.

Therefore,

1
2
Tr(toep(u)) +

1
2
Tr(W ) =

1
2
Tr(D) +

1
2
Tr(W )

≥
√

Tr(D) · Tr(W )

≥

√√√√
(
∑

i

di

)(
∑

i

d−1
i ∥bi∥2

)

≥
∑

∥bi∥ ≥ ∥X∥A,

which gives ∥X∥T ≥ ∥X∥A. Therefore, ∥X∥T = ∥X∥A.

From Theorem 1, we can now equivalently write (10) as the fol-
lowing SDP:

X̂ = argminX inf
u,W

1
2
Tr(toep(u)) +

1
2
Tr(W ) (11)

s.t.
[
toep(u) X
X∗ W

]
≻ 0, ZΩ = PΩ(X).

3.2. Dual Certification

An important question is when the algorithm (10) admits perfect
recovery. To this end, we study the dual problem of (10). De-
note the optimal solution of (10) as X⋆. Let Y ∈ Cn×L, define
⟨Y ,X⟩ = Tr(X∗Y ), and ⟨Y ,X⟩R = Re(⟨Y ,X⟩). The dual
norm of ∥X∥A can be defined as

∥Y ∥∗A = sup
∥X∥A≤1

⟨Y ,X⟩R

= sup
f∈[0,1),∥b∥2=1

⟨Y ,a(f)b∗⟩R

= sup
f∈[0,1),∥b∥2=1

|⟨b,Y ∗a(f)⟩|

= sup
f∈[0,1)

∥Y ∗a(f)∥2 ! sup
f∈[0,1)

∥Q(f)∥2,

where Q(f) = Y ∗a(f) is a length-L vector with each entry a poly-
nomial in f . The dual problem of (10) can thus be written as

max
Y

⟨Y Ω,X
⋆
Ω⟩R s.t. ∥Y ∥∗A ≤ 1,Y Ωc = 0, (12)

where Y Ωc denotes the projection of Y on the rows denoted by
the location set Ωc = {1, . . . , n}\Ω. Let (X,Y ) be primal-dual
feasible to (10) and (12), we have ⟨Y ,X⟩R = ⟨Y ,X⋆⟩R. Strong
duality holds since Slater’s condition holds, and it implies that the
solutions of (10) and (12) equal if and only if Y is dual optimal and
X is primal optimal [23]. Using strong duality we can obtain a dual
certification to the optimality of the solution of (10).

Proposition 1. The solution of (10) X̂ = X⋆ is the unique opti-
mizer if there exists Q(f) = Y ∗a(f) such that

⎧
⎪⎨

⎪⎩

(C1) : Q(fk) = bk, ∀fk ∈ F ,

(C2) : ∥Q(f)∥2 < 1, ∀f /∈ F ,

(C3) : Y Ωc = 0.

(13)

Proof. First, any Y satisfying (13) is dual feasible. We have

∥X⋆∥A ≥ ∥X⋆∥A∥Y ∥∗A

≥ ⟨Y ,X⋆⟩R = ⟨Y ,
r∑

k=1

cka(fk)b
∗
k⟩R

=
r∑

k=1

Re (ck⟨Y ,a(fk)b
∗
k⟩)

=
r∑

k=1

Re (ck⟨bk,Q(fk)⟩)

=
r∑

k=1

Re (ck⟨bk, bk⟩) =
r∑

k=1

ck ≥ ∥X⋆∥A.

Hence ⟨Y ,X⋆⟩R = ∥X⋆∥A. By strong duality we have X⋆ is
primal optimal and Y is dual optimal.

For uniqueness, suppose X̂ is another optimal solution which
has support outside F . It is trivial to justify if X̂ and X⋆ have
the same support, they must coincide since the set of atoms with
frequencies in F is independent. Let X̂ =

∑
k ĉka(f̂k)b̂

∗
k. We

then have

⟨Y , X̂⟩R =
∑

f̂k∈F

Re
(
ĉk⟨b̂k,Q(f̂k)⟩

)
+
∑

f̂l /∈F

Re
(
ĉl⟨b̂l,Q(f̂l)⟩

)

<
∑

f̂k∈F

ĉk +
∑

f̂l /∈F

ĉl = ∥X̂∥A,

which contradicts strong duality. Therefore the optimal solution of
(10) is unique.

Proposition 1 offers a way to certify the optimality of (10) as
long as we can find a dual polynomial Q(f) that satisfies (13). This
is left for future work.

4. NUMERICAL EXPERIMENTS

In this section, we evaluation the performance of the proposed al-
gorithm (10), showing that the number of measurements per signal
may be reduced as we increase the number of signals L for achieving
the same performance.

4.1. Phase transition when varying the number of signals

Let n = 64 and m = 32. In each Monte Carlo experiment, we
randomly generate a spectrally-sparse signal with r frequencies ran-
domly located in [0, 1) that satisfies a separation condition ∆ =
mink ̸=l |fk − fl| ≥ 1/n. This separation condition is slightly
weaker than the condition asserted in [11] to guarantee the success
of (10) with high probability for L = 1. For each frequency com-
ponent, we randomly generate the amplitude for each signal from
the standard complex Gaussian distribution CN (0, 1). We run (11)
using CVX [24] and calculate the reconstruction normalized mean
squared error (NMSE) as ∥X̂ − X⋆∥F /∥X⋆∥F where X⋆ is the
ground truth. The experiment is claimed successful if NMSE ≤
10−5. For each pair of r and L, we run a total of 50 Monte Carlo
experiments and output the average success rate. Fig. 2 shows the
success rate of reconstruction versus the sparsity level r for L = 1,
2, and 3 respectively. As we increase L, the success rate becomes
higher for the same sparsity level.

Fig. 1 shows the reconstructed dual polynomial for a randomly
generated spectrally-sparse signal with r = 10 when L = 1 and L =
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Fig. 1. The reconstructed dual polynomial for a randomly generated spectrally-sparse signal with r = 10, n = 64, and m = 32: (a) L = 1,
(b) L = 3.
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Fig. 2. Success rate of reconstruction versus the sparsity level r for
L = 1, 2, 3 when n = 64, m = 32 and the frequencies are generated
satisfying a separation condition ∆ ≥ 1/n.

3 respectively. It can be seen that although the algorithm achieves
perfect recovery for both cases, the reconstructed dual polynomial
has a much better localization property when multiple signals are
present.

4.2. Comparison of CS and the proposed algorithm

Let n = 64. We randomly generate r = 10 frequencies on the unit
circle [0, 1) satisfying a separation condition ∆ ≥ 1/n as in the pre-
vious setup. Fig. 3 shows the NMSE of the reconstructed signal us-
ing the CS-MMV algorithm (6) with a DFT basis, a DFT frame with
an oversampling factor c = 2, a DFT frame with an oversampling
factor c = 4, and the proposed atomic norm minimization algorithm
(10) for (a) L = 1 and (b) L = 3. The atomic norm minimization al-
gorithm outperforms (6) even when the reconstruction is not exact at
smaller values of m. The CS algorithm (6) can never achieve exact
recover since a randomly generated frequency is always off the grid,
while the recovery of the atomic norm algorithm (10) is exact after
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Fig. 3. The NMSE of reconstruction versus the number of samples
per signal m for a randomly generated spectrally-sparse signal sat-
isfying a separation condition ∆ ≥ 1/n with r = 8, n = 64: (a)
L = 1, (b) L = 3.

m exceeds a certain threshold for success. As we increase the num-
ber of signals L, both CS algorithms and the atomic norm algorithm
improve their performance.

5. CONCLUSIONS

In this paper we study the problem of simultaneously recovering
multiple spectrally-sparse signals that are supported on the same fre-
quencies lying arbitrarily on the unit circle. We propose an atomic
norm minimization problem, and solve it efficiently via semidefinite
programming. Through numerical experiments, we show that the
number of samples per signal may be further reduced by harnessing
the joint sparsity pattern of multiple signals. The proposed atomic
norm minimization algorithm can also be applied when the obser-
vation patterns are different across different signals. Future work is
to develop theoretical guarantees of the proposed algorithm and ex-
amine its performance in the presence of noise. Another interesting
direction is to study MMV extensions of the off-the-grid approach
in [13, 14].
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