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Abstract—Nonlinear distortions in analog frontends are be-
coming a growing problem which is not limited to power
amplifiers. Modern modulation methods such as OFDM and
next generation standards have high linearity requirements on all
components in the signal path. A radio system that can tolerate
a certain degree of nonlinear distortion without substantial loss
of performance could enable high cost savings in development
and production. In this paper we present a novel iterative
blind estimator for nonlinear distortions. It complements existing
mitigation algorithms by providing them with accurate estimates
of the nonlinearity characteristic. It is shown that there is a negli-
gible performance gap between perfect and estimated knowledge.
The method is designed to be computationally inexpensive and
can be readily implemented on today’s digital signal processing
systems.

I. INTRODUCTION

Nonlinear distortion caused by analog frontend components
can severely reduce the performance of communications sys-
tems. OFDM signals are particularly affected because they
exhibit a very high peak to average power ratio (PAPR) and
hence require amplifiers with linear characteristic over a large
input range. This is not only expensive to develop and produce,
it also often renders the amplifier very energy inefficient
[1]. If OFDM signals are nonlinearly distorted, inter carrier
interference is induced [2].

Predistortion is an approach that has drawn a lot of research
attention for linearization of amplifiers [3]. Here, knowledge
of the nonlinear amplifier characteristic is used to design a
predistortion nonlinearity such that the overall characteristic is
linearized. However, since temperature, aging and tolerances
change the amplifier characteristics over time, calibration
circuitry or specially designed pilots are required. Otherwise,
residual nonlinearity will remain. Similarly, many models and
algorithms exist for reicever based mitigation of nonlinear
distortions [4]–[6]. Those methods usually require knowledge
of the nonlinearity characteristic which is often assumed to be
perfectly known in publications.

To avoid additional pilots that break compatibility with
current methods, blind estimation based on observations of
the received signal is desired. In [7] we presented a low-
complexity method for parameter estimation of a memoryless
AM/AM nonlinearity. The method was implemented on a
software defined radio (SDR) platform and verified to give
performance gains with real amplifiers driven in saturation [8].
In [9] this method was extended to AM/PM nonlinearities and
it was shown that in this case computational efforts are very
high. All of these techniques employed maximum likelihood
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Fig. 1. Transmission Model

estimation based only on the received samples. In this publi-
cation we present a novel iterative method that improves the
estimate by incorporating feedback from the OFDM detector.
It also has a much lower complexity compared to the earlier
approaches. To the best knowledge of the authors, not much
research has been done in this field. A recent approach for
blind estimation of AM/AM characteristics using a Kalman
filter is presented in [10].

The rest of the paper is structured as follows. In Section II
we present the system model. In Section III the iterative blind
estimator is derived. Section IV shows the simulation results
and the paper is concluded in Section V

II. SYSTEM MODEL

A. Transmission Model

The transmission model is shown in Fig.1. The input
vector s corresponds to the time-domain baseband samples
belonging to one OFDM symbol. It has been shown in [11]
that s can be statistically described as a zero-mean complex
normally distributed random vector, i.e. s ∼ CN(0,Cs). The
covariance matrix Cs depends on the power allocation per
subcarrier and if there is no guardband and all subcarriers
have equal power then Cs = σ2

sI . The nonlinearity g(sk,θ)
is modelled as a memoryless nonlinearity (i.e., the output of
the nonlinearity at a certain time depends only on the input
at the same time) that can be decomposed into an amplitude
(AM/AM) and phase (AM/PM) distortion as follows:

g(sk,θ) = gA(|sk|,θ) · ej(](sk)+gφ(|sk|,θ)) . (1)

](sk) denotes the phase of the complex-valued sample sk.
The nonlinearity is assumed to be known at the receiver except
for a parameter vector θ. The nonlinearity is modelled on the
transmitter side and hence before the frequency selective chan-
nel which is represented by the matrix H . In most scenarios,
H will be a circular convolution matrix but the estimator is not
limited to this case. In the following, H is generally assumed
to be known perfectly at the receiver. Finally, n is a vector
representing an additive noise contribution. For the sake of
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α̂ŝ−
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Fig. 2. Decision Feedback Receiver with estimator

the estimator it is only important that n is independent of
x. A common model is additive white Gaussian noise which
models the elements nk as i.i.d. zero-mean complex normally
distributed, i.e. nk = CN(0, σ2

n) where σ2
n is the average

noise power.

B. TWTA Nonlinearity
A concrete example of a nonlinearity is the travelling wave

tube amplifier (TWTA) [14], which is a very popular model
exhibiting AM/AM and AM/PM distortions. According to this
model, the amplitude and phase nonlinearities acting on the
input signal sk are described by the following equations:

gA(|sk|,θ) =
αA|sk|

1 + βA|sk|2
(2)

gφ(|sk|,θ) =
αφ|sk|2

1 + βφ|sk|2
(3)

The parameter αA is entirely linear and indistinguishable
from other attenuation such as pathloss. Hence, in many real
systems it will be handled as part of gain control. Therefore, to
achieve unity gain in the linear range of the amplifier, αA = 1.
Hence, the parameter vector which is to be estimated becomes
θ = [βA, αφ, βφ]. This model is used in the simulations below.

C. Decision Feedback Receiver
Fig.2 shows the decision feedback receiver as presented in

[4]. It is based on the Bussgang theorem [12] which states that
the output of a memoryless nonlinearity can be decomposed
into a linear attenuation and phase rotation α and an additive
term as follows:

g(s) = αs+ nd (4)

if the input signal s is normally distributed. The receiver
assumes nd as an additive noise signal which is to be removed.
To that end, in each iteration, the signal is equalized and
demodulated using common OFDM techniques. The estimated
information bits b̂ are then remodulated to form an estimate
of the transmit signal ŝ. This signal is run through a simulated
nonlinearity and separately multiplied with α̂ and the resulting
signals are subtracted to generate an estimate n̂d. The channel
is then applied to this signal and it is subtracted from the
input. It can be seen that in the best case where both, the
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feedback and nonlinearity knowledge are perfect, n̂d = nd so
the resulting signal at the input of the detector will be Hαx.
Hence, in the best case this receiver will exhibit a SNR-loss
ρdf of

ρdf = 20 log10|α| (5)

compared to linear transmission. The reason is that the receiver
assumes nd as noise and removes it completely. A different
architecture could use the information in nd for better recep-
tion performance.

It can be seen that the decision feedback receiver requires
knowledge about the nonlinearity g(sk). It was described
earlier that the nonlinearity is assumed as known despite a
parameter vector θ which needs to be found. It is not desired to
introduce additional pilots into the system so the information
should be acquired using blind estimation methods. A method
employing the decision feedback is described in the following.

III. BLIND DECISION FEEDBACK ESTIMATOR

The blind decision feedback estimator is shown in Fig.3.
The estimator itself is visualized by a dashed gray frame. It
can be seen that its input are the received signal y and the
estimate of the transmit signal ŝ generated from the detected
bits b̂ as shown in Fig.2. For every candidate solution θ̂ the
estimator calculates

ẑ = g(ŝ, θ̂)H = α̂ŝkH + n̂dH , (6)

where the Bussgang theorem is used to decompose the effect
of the nonlinearity into a linear complex multiplication and
an addition. The resulting signal ẑ is then subtracted from the
received signal y to obtain estimates of the AWGN signal:

n̂ = y − ẑ = n+ (αs− α̂ŝ+ nd − n̂d)H︸ ︷︷ ︸
ne

. (7)

ne represents the combined error signal that arises due to
estimation errors in ŝ and θ̂. Following the same line of
thought as with the Bussgang theorem, ne can be modelled as
a zero-mean complex random variable which, except in special
cases, will usually not be Gaussian distributed.

A. Likelihood estimation
The PDF pn(n) of the additive noise n is usually known

and easy to evaluate. Following the same line of thought as the
very common maximum likelihood estimator, the following
optimization

θopt = argmax
θ̂

pn(n̂) (8)
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leads to the parameter vector θopt that yields the highest
likelihood of all possible candidates θ̂. Strictly spoken this is
different from maximum likelihood estimation where the PDF
changes depending on the parameters while here the argument
of the PDF changes but it is the same idea of finding the
candidate yielding the highest likelihood.

The method has the advantage of being very general since
it does not require n to be Gaussian distributed. However, for
the very common case of n being additive white Gaussian
noise, an especially simple formulation emerges.

B. Minimum variance estimation
Under the assumption of n being white and Gaussian, the

distribution pn is given as

pn(n̂) =

Nc−1∏
k=0

pn(n̂k) =

Nc−1∏
k=0

1

πσ2
n

e
− |n̂k|2

σ2n , (9)

where Nc denotes the number of subcarriers and hence, the
amount of time domain samples belonging to one OFDM sym-
bol. Since it is strictly monotonous, optimization is commonly
done using the logarithm of (9) as follows:

log pn(n̂) = −Nc log(πσ2
n)−

1

σ2
n

Nc−1∑
k=0

|n̂k|2 (10)

Since both, Nc and σ2
n are independent of θ̂ they are insignifi-

cant for the optimization and only the sum remains. Therefore,
(8) can be rewritten as:

θopt = argmin
θ̂

Nc−1∑
k=0

|n̂k|2 . (11)

This is equivalent to minimizing the sample variance of the
noise estimate n̂. This simplification is especially useful since
it does not require knowledge about the noise variance σ2

n

which is not always available.

C. Imperfect feedback
It can be seen from (7) that in case of perfect feedback, i.e.,

ŝ = s, the estimate θopt will on average be correct, hence
E {θopt} = θ. However, this is generally not the case for
imperfect feedback, i.e., ŝ 6= s. Instead, the best estimates will
usually exhibit a bias that tends to grow the larger the bigger
the deviation between the feedback and the original transmit
signal is. It has proven to be rather difficult to quantize this
bias in an analytical way.

D. Low complexity
The main advantage of the blind decision feedback estimator

is the simplicity especially in the common case of AWGN. For
each candidate θ̂, only the nonlinearity needs to be applied
which is possible with a complexity of order O(Nc). If present,
the frequency selective channel has to be incorporated as well
which is a matrix multiplication with H and can usually be
done in the frequency domain with a complexity of order
O(Nc logNc). This yields a total complexity of O(Nc logNc)
which is on par with standard OFDM methods. Hence, the
method is eligible for implementation on current real-time
systems.
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Fig. 4. Block diagram for principal estimation performance

E. Generality

The method is not limited to input signals exhibiting a
normal distribution as long as the Bussgang theorem applies. It
was shown in [13] that the theorem applies for all signals that
can be described as a zero-mean circularly complex random
process.

Compared to the feedforward based results from [7], [9],
there are much less restrictions on the shape of the nonlinear-
ity. The method can cope with nonlinearities exhibiting non-
monotonous or discontinouos characteristics.

Finally, the method can cope with non-AWGN noise. How-
ever, to remain computationally inexpensive, the noise density
should be easy to evaluate. The generality paired with a very
low complexity renders this a very powerful framework for
nonlinearity estimation.

IV. NUMERICAL RESULTS

All of the following simulations employ the TWTA nonlin-
earity model which is described above.

A. Estimation performance

Since the estimator uses feedback from the OFDM receiver,
its performance strongly depends on the remaining receiver
structure. In order to obtain more independent results, the
estimator is investigated as shown in Fig.4. The signal s
is generated as white Gaussian noise with unit variance in
accordance to the Gaussian assumption for OFDM signals.
Afterwards, the signal is nonlinearly distorted with a TWTA
nonlinearity and superimposed by AWGN to produce the
received signal y. The feedback signal is generated by su-
perimposing the original transmit signal s with AWGN nfb
of variance σ2

fb and afterwards renormalized to unit variance
to generate a feedback signal ŝ that resembles the result of a
remodulation with bit errors. The nonlinearity is then jointly
estimated by the blind estimator.

Firstly, the estimation performance is tested for the case
of perfect feedback, i.e., σ2

fb = 0. Fig.5 shows the respective
estimation mean square error for different observation sizes.
Firstly it can be seen that βA is estimated more accurately
due to the larger influence of this parameter. Increasing the
amount of observations consistently decreases the estimation
error which indicates that the estimator is free of bias and
hence, estimation accuracy can be controlled almost arbitrarily
with the amount of observations.

When the assumption of perfect feedback is not met, the
estimation is subject to bias errors and hence increasing the
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Fig. 5. Performance with perfect feedback for βA = 0.3, αφ = βφ = 2
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Fig. 6. Effect of imperfect feedback for different feedback SNRs ρfb

amount of observations will not improve the estimation error
any further. This can be seen in Fig.6 for the same nonlinearity
that was used in Fig.5. The resulting estimation performance
is shown for Nc = 20480 and different values of the feedback
SNR ρfb which is defined as follows:

ρfb = 10 log10
1

σ2
fb
. (12)

It can be seen that the performance flattens out similar to
an error floor. It also shows that the estimation is much
more sensitive to a noisy feedback signal than to AWGN
in the received signal and hence, the feedback noise quickly
dominates the overall estimation performance. These curves
cannot be improved any further by increasing the amount of
observations.

B. System simulation results

Finally, the method was tested in a system simulation with
the following parameters:
• 512 subcarrier OFDM, 256 guardband carriers
• QPSK, 16-QAM and 64-QAM modulation
• TWTA nonlinearity with βA = 0.3, αφ = βφ = 2
• 40 symbols observation size (20480 samples)
• AWGN channel

The results are shown in Fig.7 for multiple iterations of the
decision feedback receiver. The ideal curve depicts the case of
perfect feedback and perfect nonlinearity knowledge and hence
only includes the SNR-loss ρdf originating from the factor α
that the decision feedback receiver cannot mitigate. The linear
curve corresponds to the performance of a OFDM receiver
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Fig. 7. Bit error rates for TWTA nonlinearity and AWGN channel

that is unaware of the nonlinearity. This receiver exhibits an
error floor in every case cased by the additive nd.

It can be seen that in case of QPSK and 16-QAM the best
possible performance is reached after just one or two iterations.
In the case of 64-QAM, four iterations are required to reach the
ideal performance in the high SNR region. The often important
BER of 10−3 is reached in all cases with an SNR loss of less
than 0.3 dB. It has also shown that the curves for estimated
nonlinearity knowledge are basically indistinguishable from
the curves where the nonlinearity is assumed as perfectly
known. The SNR gap in those cases is well below 0.1 dB
consistently over all simulations.

V. CONCLUSIONS AND OUTLOOK

A blind decision feedback estimator for memoryless distor-
tions in OFDM systems has been proposed. It has been shown
that it exhibits a very low computational complexity and hence
is fit for implementation on today’s hardware. Bit error rate
simulations show that a system using this estimator is capable
of reaching nearly optimal performance with just a very small
SNR gap. Furthermore it has shown that the results with an
estimated nonlinearity are virtually indistinguishable from the
case of perfectly known nonlinearity.

Some open questions still remain. For once it has shown that
the estimator is very general and could theoretically be applied
to a very broad range of nonlinearity estimation scnearios.
These presumptions need to be investigated. Furthermore,
the system simulations only covered the case of an AWGN
channel. The case of an actual frequency selective channel
needs to be investigated. Of special interest is the case of
imperfect channel knowledge since this knowledge is used in
the estimation process. The interdependence of channel and
nonlinearity estimation needs to be investigated.
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