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ABSTRACT

Given a set of observations, the estimation of covariance ma-

trices is required in the analysis of many applications. To this

end, any know structure of the covariance matrix can be taken

into account. For instance, in case of separable processes, the

covariance matrix is given by the Kronecker product of two

factor matrices. Assuming the covariance matrix is full rank,

the maximum likelihood (ML) estimate in this case leads to

an iterative algorithm known as the flip-flop algorithm in the

literature. In this work, we first generalize the flip-flop algo-

rithm to the case when the covariance matrix is rank deficient,

which happens to be the case in several situations. In addition,

we propose a non-iterative estimation approach which incurs

in a performance loss compared to the ML estimate, but at the

expense of less complexity.

Index Terms— Kronecker product, separable processes,

covariance matrix estimation, flip-flop algorithm

1. INTRODUCTION

A simple approach for estimating the covariance matrix given

a set of observations, consists in computing the unstructured

sample estimate. Such an approach, however, ignores any in-

herent structure of the covariance matrix and is outperformed

by approaches which consider the structure. In a wide range

of applications, we encounter separable processes which re-

sult in covariance matrices of the data expressed by the Kro-

necker product [1] of two factor covariance matrices. Such

processes can be found in communications, where multiple-

input multiple-output (MIMO) channels resulting from mul-

tiple transmit and receive antennas can be modeled accord-

ing to a Kronecker model [2, 3] due to the spatial correla-

tions at the transmitter and receiver. Spatio-temporal correla-

tions [4] such as the noise processes in the signal modeling

of magneto- (MEG) and electroencephalography (EEG) data

[5, 6] can also be described by the Kronecker model.

For Gaussian distributed data, the maximum likelihood

(ML) estimate of full-rank covariance matrices with a Kro-
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necker structure has been derived in [7, 8]. Nonetheless, the

ML estimator is not given in closed-form and is computed it-

eratively via the flip-flop algorithm [7, 9, 10], which basically

performs an alternating estimation of the two factor matrices

of the Kronecker product which define the covariance matrix.

The algorithm is repeated until convergence. At each itera-

tion, nevertheless, the algorithm requires the inversion of a

previous estimate of one of the factor matrices.

In this work, we generalize the flip-flop algorithm to the

case when the covariance matrices are not full rank, i.e. the

data lies in a subspace (for example rank deficient MIMO

channels). In contrast to the iterative ML estimator, we also

present a non-iterative estimation approach based on closed-

form estimates of the factor matrices which define the covari-

ance matrix. Simulation results show that the proposed algo-

rithm incurs in a performance loss compared to the flip-flop

algorithm, but at the expense of less complexity since it is

non-iterative and no matrix inversions are required. Besides

the Kronecker structure, we assume no further structure of

the covariance matrix as for instance being Toeplitz or per-

symmetric [11, 12] or any sparsity of the factor matrices [13].

1.1. Notation

We define scalars, column vectors and matrices with lower

and upper case letters, lower case bold letters and upper case

bold letters, respectively. The determinant of matrix G is

given by det(G), while the pseudo-determinant of G is given

by pdet(G), which is equal to the product of all non-zero

eigenvalues of G. The pseudo-inverse of G is given by

G+. With G ∈ C
m×n, the operator vec(G) returns the

mn-dimensional vector resulting from stacking the columns

of G. The m×m identity matrix is denoted by 1m.

2. PROBLEM SETUP

The data has zero mean and is Gaussian distributed. We focus

on separable processes and denote xk ∈ C
MN as the k-th data

sample vector consisting of MN entries, such that

xk = wk ⊗ yk, (1)
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where wk ∈ C
M and yk ∈ C

M are two independent stochas-

tic processes with zero mean and covariance matrix

R1 = E
[

wkw
H
k

]

∈ C
N×N (2)

R2 = E
[

yky
H
k

]

∈ C
M×M , (3)

respectively. Without loss of generality we assume the data

to be zero mean, so the covariance matrix R of the data is

given by the correlation matrix, which from (1), (2) and (3)

and applying a property of the Kronecker product we obtain

R = E
[

xkx
H
k

]

= R1 ⊗R2 ∈ C
MN×MN . (4)

In contrast to the general assumption found in the literature,

we assume the covariance matrix R or equivalently the factor

matrices R1 and R2, not to be necessarily full rank, i.e.

P = rank (R1) ≤ N (5)

Q = rank (R2) ≤ M (6)

rank (R) = P ·Q ≤ M ·N. (7)

where (7) results from a property of the Kronecker product.

Given K independent samples xk for k = 1, . . . ,K, a

simple approach to estimate the correlation matrix is:

R̂ =
1

K

K
∑

k=1

xkx
H
k . (8)

This estimator does not take any structure into account and

therefore, leads to a significant performance degradation com-

pared to other approaches which consider the structure.

3. FLIP-FLOP ALGORITHM

Given K samples x1, · · · ,xK and under the assumption that

R1 and R2 are full rank, such that R is also full rank, the

likelihood function of the factor matrices R1 and R2 reads as

L1(R1,R2 | x1, . . . ,xK) =

exp

(

−

K
∑

k=1

xH
k (R1⊗R2)

−1
xk

)

πKdet (R1 ⊗R2)
K

,

(9)

where we have employed (4). By taking the derivative of the

log-likelihood function with respect to R1 and R2 and ap-

plying some properties of the determinant and inverse with

the Kronecker product, the maximum likelihood estimator of

the factor matrices leads to an iterative alternating algorithm

called the flip-flop algorithm, where the ML estimates are

given by [7, 9]

R̂1 =
1

KM
·

K
∑

k=1

XH
kR

−1

2 Xk (10)

R̂2 =
1

KN
·

K
∑

k=1

XkR
−1

1 XH
k , (11)

where the matrix Xk ∈ C
M×N results from rearranging the

entries of the vector xk into an M ×N matrix:

Xk =
[

xk,1 xk,2 · · · xk,N

]

∈ C
M×N , (12)

where the columns xk,n ∈ C
M for n = 1, . . . , N are defined

such that xk = vec (Xk), i.e.

xk =
[

xT
k,1 xT

k,2 · · · xT
k,N

]T
∈ C

MN . (13)

The iterative and alternating nature of the flip-flop algo-

rithm can be observed in (10) and (11). The algorithm is ini-

tialized, for instance, with R2 = 1M , and at each step an

estimate of one of the factor matrices, i.e. R1 or R2, is ob-

tained based on a previous estimate of the other factor matrix.

It is repeated until convergence according to several possible

criteria, like the Frobenius norm of the estimated covariance

matrix or the likelihood function [7].

With R̂1,ML and R̂2,ML as the final estimates for R1 and

R2, the ML estimate of R is thus obtained from

R̂ML = R̂1,ML ⊗ R̂2,ML. (14)

Observe that the estimation of the factor matrices R̂1 and R̂2

is valid up to a non-zero scalar factor, since given an arbi-

trary scalar α 6= 0, αR̂1,ML and α−1R̂2,ML lead to the same

estimate R̂ML given in (14). In case we are interested in es-

timating R1 and R2 and not only R, this ambiguity can be

resolved by assuming, for example, that tr(R1) is known.

3.1. Rank Deficient Case

The ML estimates (10) and (11) have been derived on the

assumption that R1 and R2, and in turn R, have full rank.

When considering the general case where R1 and R2 are rank

deficient, the likelihood function (9) and (10) and (11) are no

longer valid, since R−1

1 and R−1

2 do not exist.

For the case that R = R1 ⊗R2 is not full rank, the dis-

tribution of the data is degenerate and therefore, we cannot

properly write a density in the MN -dimensional space. As-

suming the ranks (5) and (6) are P < N and Q < M , such

that the Gaussian distributed data is supported in an PQ-

dimensional subspace of the MN -dimensional space. For

this case, we can write the likelihood function as follows

L2(R1,R2 | x1, . . . ,xK) =

exp

(

−

K
∑

k=1

xH
k (R1 ⊗R2)

+
xk

)

πKpdet (R1 ⊗R2)
K

,

(15)

where G+ and pdet (G) are the pseudo-inverse and pseudo-

determinant of G. We now discuss the ML estimates of R1

and R2 when these matrices are rank deficient. To this end,

denote the eigenvalue decomposition (EVD) of R1 and R2 as

R1 = VΛ1V
H (16)

R2 = UΛ2U
H, (17)
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where V ∈ C
N×P , Λ1 ∈ R

P×P
+ , U ∈ C

M×Q, Λ2 ∈ R
Q×Q
+

with VHV = 1P and UHU = 1Q.

The log-likelihood function, i.e. L3 = logL2(R1,R2 |
x1, . . . ,xK), without constant terms, can be written as

L3 = −K ·Q log (pdet (R1))−K · P log (pdet (R2))

−K · tr
(

(

R+

1 ⊗R+

2

)

R̂
)

(18)

which follows by rewriting

K
∑

k=1

xH
k (R1 ⊗R2)

+
xk =

K
∑

k=1

tr
(

(R1 ⊗R2)
+
xkx

H
k

)

,

= K · tr
(

(R1 ⊗R2)
+
R̂
)

,

in (15), where recall R̂ is given in (8). The expression in (18)

also results from employing the following identities [14]

(R1 ⊗R2)
+
= R+

1 ⊗R+

2

pdet (R1 ⊗R2) = pdet (R1)
Q
· pdet (R2)

P
.

Let us focus on finding the ML estimate of R2. To this

end, let us rewrite the log likelihood function (without con-

stant terms) from (18) as

L3 = −K ·Q log (pdet (R1))−K · P log

(

Q
∏

ℓ=1

λ2,ℓ

)

−K · tr





N
∑

i=1

N
∑

j=1

R̂ji ·R
+

1,ij ·UΛ
−1

2 UH



 , (19)

where we used (17) with λ1,ℓ for ℓ = 1, . . . , Q as the eigen-

values of R2 and have also applied the definition of the

pseudo-determinant and pseudo-inverse. We also employ the

fact, which follows from the derivation for the full rank case,

that for the last term in (18) we can rewrite using (17)

tr
(

(

R+

1 ⊗R+

2

)

R̂
)

= tr





N
∑

i=1

N
∑

j=1

R̂ji ·R
+

1,ij ·UΛ
−1

2 UH



 ,

where R+

1,ij is the i, j-th element of R+

1 ∈ C
N×N and R̂ji ∈

C
M×M for i, j = 1, . . . , N are defined such that

R̂ =







R̂11 · · · R̂1N

...
...

R̂N1 · · · R̂NN






∈ C

MN×MN . (20)

We can find the ML estimate of λ2,ℓ, by taking the par-

tial derivative of the log-likelihood function L3 in (19) with

respect to λ2,ℓ and setting it to zero, which results in

∂L3

∂λ2,ℓ

= −
KP

λ2,ℓ

+
K

λ2
2,ℓ

· tr





N
∑

i=1

N
∑

j=1

R̂jiR
+

1,ijuℓu
H
ℓ



 = 0

(21)

where uℓ is the the eigenvector of R2 corresponding to the

eigenvalue λ2,ℓ. By applying the property of the trace, from

(21) we can write

λ2,ℓ =
1

P
· uH

ℓ





N
∑

i=1

N
∑

j=1

R̂jiR
+

1,ij



uℓ. (22)

Furthermore, based on the xk,n ∈ C
M for n = 1, . . . , N

defined in (13) and with (8) and (20), notice that

R̂ji =
1

K

K
∑

k=1

xk,jx
H
k,i, (23)

such that with (12), we can rewrite (22) as

λ2,ℓ = uH
ℓ

(

1

KP
·

K
∑

k=1

XkR
+

1 X
H
k

)

uℓ. (24)

Since the columns of Xk lie in the subspace span(U) and R+

1

is positive semi-definite, the rank of
∑K

k=1
XkR

+

1 X
H
k is also

Q. Therefore, from (24), we can conclude that λ2,ℓ and uℓ

for ℓ = 1, . . . , Q are the Q eigenvalues and eigenvectors of
(

1

KP
·
∑K

k=1
XkR

+

1 X
H
k

)

. From (24) and (17), we have that

the ML estimate of R2 for the rank deficient case is

ǓΛ̌2Ǔ
H = Ř2 =

1

KP
·

K
∑

k=1

XkR
+

1 X
H
k . (25)

In a similar fashion and following also the derivation for the

full rank case [10, 15], we can show that

Ř1 =
1

KQ
·

K
∑

k=1

XH
kR

+

2 Xk. (26)

Comparing the ML estimates for the full rank case, i.e. (10)

and (11), with the general case, i.e. (26) and (25), we observe

that basically we have replaced the inverse with the pseudo-

inverse and the M and N with the ranks Q and P . As in the

full rank case, the flip-flop algorithm for the rank deficient

case is iterative and alternating, requiring several iterations

for convergence. At each iteration, a pseudo-inverse of a pre-

vious estimate of one of the factor matrices is required.

4. NON-ITERATIVE APPROACH

We now present a non-iterative approach for computing the

estimates of R1 and R2. Based on (16) and (17), we can

express for the rearranged k-th sample (see (12)) as

Xk = UΛ
1

2

2 ZkΛ
1

2

1 V
H, (27)

where Zk ∈ C
Q×P contains i.i.d. complex Gaussian random

variables with zero mean and unit variance. Hence, defining

Zk based on its columns zk,i ∈ C
Q for i = 1, . . . , P

Zk =
[

zk,1 · · · zk,P
]

∈ C
Q×P , (28)
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we have that E
[

zk,mzH
k,m

]

= 1Q for i = 1, . . . , P . Using

(27), (28), the previous expectation and VHV = 1P we can

show that

E
[

XkX
H
k

]

= UΛ
1

2

2 E
[

ZkΛ1Z
H
k

]

Λ
1

2

2 U
H

= UΛ
1

2

2

(

P
∑

i=1

λ1,i E
[

zk,iz
H
k,i

]

)

Λ
1

2

2 U
H

= tr (Λ1) ·UΛ2U
H

= tr (R1) ·R2. (29)

Furthermore, we can similarly show that

E
[

XH
kXk

]

=tr (R2) ·R1. (30)

By approximating E
[

XkX
H
k

]

with 1

K

∑K

k=1
XkX

H
k and

E
[

XH
kXk

]

with 1

K

∑K

k=1
XH

kXk, we obtain closed-form

estimates of
ˆ̂
R1 and

ˆ̂
R2 from (29) and (30) as follows

ˆ̂
R2 =

1

K · tr (R1)

K
∑

k=1

XkX
H
k (31)

ˆ̂
R1 =

1

K · tr
(

ˆ̂
R2

)

K
∑

k=1

XH
kXk. (32)

given the K observations Xk and assuming tr (R1) is known

to resolve a scalar ambiguity in the estimation of the fac-

tor matrices. The closed-form estimate of R results from
ˆ̂
R =

ˆ̂
R2 ⊗

ˆ̂
R2. If we are only interested, however, in es-

timating R, then tr (R1) can be set to an arbitrary value with-

out influencing the estimation of R. Note that the estimates

(31) and (32) are independent of the rank of R1 and R2.

5. NUMERICAL RESULTS

To evaluate the performance of the presented algorithms, we

generate two random rank deficient covariance matrices R1

and R2, which are kept fixed throughout the simulation, with

parameters N = 30 and M = 8 and with rank P = 15 and

Q = 4, respectively. Besides the fact that they are Hermitian

and positive semi-definite, no additional structure is imposed

on R1 and R2. The covariance matrix R is computed from

the Kronecker product of the generated factor matrices R1

and R2 (see (4)). As a figure of merit, we consider the nor-

malized root mean square error (MSE) of the coefficients of

the covariance matrix R averaged over T = 100 realizations.

For instance, for the case of the unstructured estimate (8), the

average normalized root MSE is

√

1

T

∑T

t=1

‖R−R̂t‖2

F

‖R‖2

F

, where

‖R‖2F is the Frobenius norm of R and R̂t is the unstructured

estimate given the K data samples of the t-th realization. The

K independent samples which are available for the estima-

tion of R are generated from a complex Gaussian distribu-

tion with zero mean and covariance matrix R. In Fig. 1, we

compare four different estimators as a function of the number

of samples K: the unstructured estimate (4), the ML esti-

mate obtained via the generalized flip-flop algorithm (25) and

(26), the non-iterative estimate obtained with (31) and (32)

and a structured estimate obtained by finding the factor matri-

ces whose Kronecker product best matches the unstructured

estimate R̂ in the Frobenius norm sense [16]. As expected

the unstructured estimate performs the worse, since it does

not take the structure into account. Taking into account the

structure with the structured estimate [16] (requires a rank

one approximation of a N2 × M2 matrix) leads to a better

estimation. The best performance is achieved, however, with

the flip-flop algorithm which provides the ML estimate. Al-

though the non-iterative proposed approach is not as good as

the flip-flop algorithm, it has much less computational com-

plexity (due to the iterative nature and the computation of the

pseudo-inverse of a factor matrix at each iteration in the flip-

flop algorithm) and thus, could be a better choice in some ap-

plications. Different randomly generated factor matrices R1

and R2 lead to the same qualitative behavior.
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Non-iterative

Flip-flop Algorithm

Fig. 1. Average normalized root-MSE as a function of the

number of samples K for different estimators.

6. CONCLUSION

We have generalized the flip-flop algorithm for the case when

the factor matrices are not full rank, and thus obtain, the ML

estimator of rank deficient covariance matrices with a Kro-

necker structure. We have also presented a non-iterative ap-

proach which provides a closed-form estimate of the covari-

ance matrix for the full rank or rank deficient case. Albeit

simulation results show the flip-flop algorithm outperforms

the proposed non-iterative approach, the performance gain

might not be so significant when considering the higher com-

plexity of the flip-flop algorithm, due to the iterative nature

and a matrix pseudo-inversion required at each iteration.
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