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ABSTRACT

Lattice Reduction aided softoutput MIMO detectors have
been demonstrated to offer a promising gain. However, com-
puting Log-Likelihood ratios (LLR) for near-optimal MIMO
detection, still poses a significant challenge for practical
implementations. In this work, we present counter-ML bit-
flipping algorithm for LLR generation. The proposed LLR
generation algorithm has been designed to take advantage
of the previously reported list generation algorithm, Multi-
Tree Selective Spanning (MTSS), by maximizing the reuse
of computations. Afterwards, a C-programmable MIMO
detector architecture providing both data level parallelism
(DLP) and instruction level parallelism (ILP), is designed
for implementation. The proposed solution supports multiple
MIMO detection modes, with both hard and softoutput. Per-
formance of the proposed solution can be tuned ranging from
SIC to near-ML to near-MAP, by adjusting a single parame-
ter. In case of 4 × 4 QAM-64, it achieves peak-throughputs
of 2.43Gbps and 629Mbps in case of hard and softoutput
MIMO detection, with only 66.37mW and 76.14mW respec-
tive power consumption.

1. INTRODUCTION

The upcoming wireless standards, 3GPP LTE-Advanced
(LTE-A) and 802.11ac, have high throughput requirements
and multi-mode operations. To meet the high-throughput re-
quirements, baseband processors supporting parallelism, such
as those combining Instruction Level Parallelism (ILP) and
Data Level Parallelism (DLP), are required. In order to sup-
port multi-mode operation and allow performance/complexity
trade-offs, programmable baseband solutions are required
[1]. Furthermore, [2] [3] demonstrate that high perfor-
mance software-defined solutions with cost comparable to
dedicated architectures can be designed. However, a pro-
grammable MIMO detector implementation, that can provide
near-optimal performance is still a significant challenge for
practical systems.

Multi-Tree Selective Spanning [4] has been demonstrated
to be suitable for programmable architectures and allows to
conveniently tune detection performance. In this work, we

further extend MTSS to support softoutput MIMO detection.
In majority of tree-search based MIMO detection algorithms
such as SD [5], FCSD [6] and SSFE [7], a significant reason
of performance degradation is the missing counter-ML hy-
pothesis. The missing counter-ML hypothesis causes a loss
in BER performance in softoutput MIMO detection. LLR
generation techniques that employ bit-flipping [8] [9], im-
prove detection performance at low additional computational
complexity. In this paper a new technique for LLR genera-
tion, counter-ML bit-flipping, is proposed. Counter-ML bit-
flipping takes advantage of the MTSS algorithm to maximize
the reuse of computations. Afterwards, a C-programmable
baseband processor, providing both DLP and ILP, is designed
for implementation. The proposed implementation supports
multiple MIMO detection modes with both hard and soft-
output, by employing MTSS and counter-ML bit-flipping,
respectively. An algorithm/architecture co-design approach
is used to provide a scalable solution, with tunable perfor-
mance/energy trade-offs. The baseband processor can be
operated in multiple modes with performance ranging from
SIC to near-ML to near-MAP.

2. BACKGROUND AND SYSTEMMODEL

Consider a spatially multiplexed MIMO system with Mt

transmit and Nt receive antennas. The vector of received
symbols y ∈ CNt×1 is given as,

y = Hs+n (1)

where s ∈ CMt×1 is the vector of transmitted symbols
taken independently from a M -QAM constellation, and
n ∈ CNt×1 is the vector of complex Gaussian noise sam-
ples (ni ∼ N(0,σ2)) and H ∈ CNt×Mt denotes the MIMO
channel matrix. Lattice Reduction-aided linear MIMO de-
tection has been proposed in [10] [11] [12]. To perform
LR-aided MIMO detection first a reduced lattice basis is ob-
tained as H̃ = HP, where P is generated by using a LR
algorithm [13]. The system equation (1) can be rewritten as,

y = HPP−1s+n, (2)
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Then the Moore-Penrose pseudo inverse of the transformed
channel matrix, H̃† is applied to obtain

ẑ = P−1s+ w, (3)

where w is colored noise with zero mean and variance Cw =
σ2(H̃HH̃)−1. A low complexity tree-searching method has
been proposed in [14], by using the approximation H̃HH̃ ≈ I

and performing QR-decomposition of P−1 as P−1 = QR,
to obtain ∥∥ẑ −P−1s

∥∥2 = ∥ŷ −Rs∥2 (4)

from (3), where ŷ = QHẑ,Q is a unitary matrix and R is an
upper-triangle matrix. This transforms (4) into a tree-search
problem.

3. COUNTER-ML BIT-FLIPPING FOR SOFT
OUTPUT MIMO DETECTION

Soft-output MIMO detection usually consists of two parts: (1)
A list generator that gives a list of candidate symbol vectors,
denoted by L ⊆ ΩM , where ΩM is the set containing all the
possibilities ofMt×1 vector symbol s; (2) A Log-likelihood-
ratio (LLR) generator that approximates the a posteriori prob-
abilities (APP). Using the Max-Log Approximation (MAP),
the LLR(j, b) value corresponding to the bth bit of the jth
scalar symbol in s can be calculated as,

1

2σ2

(

min
s∈L∩χ0

j,b

∥ŷ −Rs∥2 − min
s∈L∩χ1

j,b

∥ŷ −Rs∥2
)

(5)

where χ0
j,b and χ1

j,b are the disjoint sets of symbol vectors
that have the bth bit of the jth scalar symbol in s equal to 0
and 1, respectively. Soft-output MIMO detection consists of
two minima search problems, as shown in (5), which can be
re-written as,

LLR(j, b) =

{
TML −TML

j,b , sML
j,b = 0

TML
j,b −TML, sML

j,b = 1

}

(6)

where TML =
∥∥ŷ −RsML

∥∥2 and sML is obtained from the
candidate list as,

sML = arg min
s∈L

∥ŷ −Rs∥2 , (7)

In (6) sML
j,b = 0 denotes the bth bit of the jth scalar symbol of

sML is 0, and vice versa. So LLR(j, b) can be computed by
first finding the ML solution (7) and then finding the counter-
ML hypothesis given as,

TML
j,b = min

sML∈χML
j,b

∥∥∥ŷ −RsML
∥∥∥
2

, (8)

where χML
j,b is obtained by flipping sj,b ∈ L to sML

j,b . In con-
trast to [9] where the corresponding bit of symbol vectors in

L is flipped to both 0 and 1 to obtain two new sets χ0
j,b and

χ1
j,b, in this work L is flipped to obtain only the set χML

j,b .
If sML

j,b = 0 then sML
j,b = 1. In this paper, MTSS [4] is

considered for list generation, because of its low computa-
tional complexity, regular data flow and near-optimal perfor-
mance. It has been demonstrated to achieve near-ML per-
formance [4]. However, as in majority of other tree search
algorithms, there are two major problems when using MTSS
for softoutput MIMO detection. 1). MTSS cannot guarantee
that counter ML hypothesis always exists i.e. it might happen
that L∩χML

j,b = φ. This causes a degradation in BER perfor-
mance due to the missing counter ML hypothesis. 2). Also,
for an existing counter ML hypothesis χML

j,b , MTSS does not
guarantee the minimization of (8), as it solves (7) by using
a local minimization criteria, i.e. spanning fixed number of
nodes at each layer, for details see [4] and [7]. In order to
tackle these two problems we propose the counter-ML bit-
flipping strategy for LLR generation.

Starting from Level i = Nt, the PED (Partial Euclidean
Distance) of a partial symbol vector si = [si, si+1, .., sNt]

is Ti(si) = Ti+1(si+1) +
∥∥ei(si)

∥∥2, where the PED-

increment is ei(si) = ŷi −
Nt∑

k=i

Riksk. To generate the

counter-ML hypothesis, the bth bit of the jth scalar symbol
in si = [si, .., sj , .., sNt] is flipped to the counter-ML bit to
obtain sML

j,b = [si, .., sj +∆ML
j,b , .., sNt]. The PED-increment

for the bit-flipped symbol is given as,

ei(s
ML
j,b ) = ŷi −

j−1∑

k=i

Riksk −Rij(sj +∆ML
j,b )−

Nt∑

k=j+1

Riksk

= ei(s
i)−Rij∆

ML
j,b (9)

This shows that when flipping the bth bit of the jth scalar
symbol in s to obtain sML

j,b , only ei(si) with i = [1 to j] need
to be updated, while ei(si) with i = [j+1 to Nt] remains un-
changed. Note that, ei(si) with i = [j + 1 to Nt] has already
been computed during the list generation (MTSS), which can
be reused. So the PED for a counter-ML bit-flipped symbol
sML
j,b , at a level i can be updated as,

Ti(s
ML
j,b ) =

{
Ti+1(sML

j,b ) + ||ei(sML
j,b )||2, i = 1 to j

Ti+1(si+1) , i = j + 1 to Nt

}

(10)
So flipping the bth bit of jth scalar symbol only requires up-
dating Ti(sML

j,b ) for i = [1 to j], while Ti(si) for i = j +
1 to Nt is reused, which is generated during the list genera-
tion.

Assume that, sML
j,b0

= 0, which means that bit at location
b0 in sML

j equals 0. So the bit b0 in sj has to be flipped
to 0, in order to obtain sML

j,b0
. For example, if the sj = 3

having the corresponding bit [b1 = 0, b0 = 1] (Fig.1) and
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sML
j,b0

= 0, then∆ML
j,b0

= −2 as shown in Table 1. The counter-
ML bit-flipping can be performed by a simple addition, sj +
∆ML

j,b0
= sML

j,b0
. In this work, a LUT is used to store the bit-

flipping values, shown in Table 1. In case of QAM-16, LUT
with 8 entries is required and is stored using 8× 4bit values.
LUT is shown only for sj = [−3,+3], in a similar way sj =
[−1,+1] LUT entries can be constructed.

-3 -1 1 3

01001011

Fig. 1. Gray-coded QAM-16 points (real-axis).
b1 b0

sML
j,b1

= 0 sML
j,b1

= 1 sML
j,b0

= 0 sML
j,b0

= 1
sj = +3 0 -6 -2 0
sj = −3 6 0 +2 0

Table 1. LUT for generating ∆ML
j,b

4. ARCHITECTURE DESIGN

The C-programmable baseband processor shown in Fig.2, is
designed using the TARGET tool suite [15]. The designed
ASIP supports both hardoutput and softoutput MIMO de-
tection, by implementing MTSS [4] and the counter-ML
bit-flipping, respectively. The baseband processor is config-
ured for 4×4 and QAM-64 MIMO detection. However, it can
be configured to support other modes as well i.e. 2× 2, 8× 8
and QAM-4, QAM-16 by changing the firmware only, as it
is C-programmable. DLP is enabled across each Functional
Unit (FU) by 8-way SIMD operations, while all the FUs can
also perform independent execution, hence providing ILP.
The processor has two distinct data paths 16-bit and 6-bit
(Fig.2). 16-bit data is stored in the Register Files VWRF0 and
VWRF1, while 6-bit data is stored in VRF. 16-bit operations
and 6-bit operations are performed on FUs VWFU0/1 and
VFU0/1, respectively. The shared register file VWR between
the VWRF0/1, acts as a scratchpad memory and is accessed
by the MOV FUs. ŷ and R are stored in the 16-bit memory
DMEM(VW)0/1, respectively and are loaded to VWRF0/1
by the load/store FUs (LD/ST). While, the generated candi-
date list L is stored in VRF and is written to DMEM0. Each
of the FU in 16-bit and 6-bit data path performs 8 × 16 bit
and 8× 6 bit operations, respectively. VWR and VRF has 64
entries of 8×16 bit and 8×6 bit, respectively. While, each of
VWRF0/1 has 32 entries of 8×16 bit. The motivation behind
using a 6-bit data path is that, both L (which are basically
constellation points Fig.1) and ∆M̄L

j,b (Table 1), can be stored
using 6-bits. Note that the candidate list L has to be big, in
order to achieve near-optimal performance, so using a 6-bit
register file (VRF) saves both power and area. By using same
bit widths for both L and ∆M̄L

j,b , same instructions can be
used for performing the common operations in MTSS [4] and
counter-ML bit-flipping. This reduces the instruction set of
the processor, as explained below:

DMEM 1
(VW)

RF
(VWR)

VWRF 0

MOV

VWRF 1

MOV

DMEM 0
(VW)

LD/
ST

DMEM 0

LD/ST
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pipe pipe
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pipe pipe
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Fig. 2. C-programmable baseband processor supporting both
Hardoutput and Soft-output MIMO detection.

1) Slicing and Enumeration: In list generation algorithms
slicing and enumeration is required. Both slicing and enu-
meration are supported on VFU0/1. A MAC operation
(ŷi − Riksk), is always performed after slicing/enumeration.
By-pass path shown by the dashed line 3 in Fig.2, di-
rectly feeds the constellation point s (obtained by slic-
ing/enumeration) to VWFU0 for a MAC operation. While
ŷi and Rik are read from VWRF0. This by-passing decreases
register accesses to VRF. Details of slicing and enumeration
are not explained here due to space limitations, for details see
MTSS [4].
2) MAC operation: In both MTSS and LLR generation
MAC operations are performed extensively. In list generation
ŷi − Riksk and in LLR generation (9) are the MAC opera-
tions. Both of these operations are supported on VWFU0/1.
By using 6-bit for both sk and ∆ML

j,b , they are performed by
the same instruction.
3) ∆ML

j,b Generation: ∆ML
j,b is generated by VFU0/1. The

output of the VFU0/1 can be directly read into the VWRF0/1
to perform the MAC operation (9). This is enabled by the
by-pass path shown by the dashed line 3 in Fig.2. This avoids
writing the ∆ML

j,b to VRF, hence decreases access to VRF.
4) PED update operation: Updating the PED values is also
required in both MTSS and LLR generation, as shown in (10).
PED update operations are supported on both VWFU0/1.
Note that the PED update is always performed after a MAC
operations. In order to avoid storing the result of a MAC oper-
ation (9) in the VWRF0/1, by-pass paths are enabled (shown
by the dashed line 4 in Fig.2). This by-pass directly outputs
the results of a MAC operation performed on VWFU0 to the
input of VWFU1, so the PED update can be performed in the
next cycle. Hence, minimizing register file access.
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5. RESULTS

A 4 × 4 MIMO system using QAM-64, with the 3GPP-LTE
channel model and 1/2-rate Turbo coding is considered. DRP-
LR [4] is used for LR. Coded BER performance of MTSS is
shown in Fig.3(a). In case of hardoutput the candidate with
the least PED given by (7), is demapped to the QAM constel-
lation. While in case of softoutput, counter-ML bit-flipping
is used for LLR generation. MTSS can be operated in differ-
ent modes by choosing the spanning vector m [4]. Fig.3(a)
shows that, MTSS with m = [11112244] achieves near-ML
and near-MAP performance in case of hard and softoutput
detection, respectively. Fig.3(b) provides the coded BER per-
formance comparison of MTSS to SSFE [7], Fixed complex-
ity sphere detector (FCSD) [6], LR-aided Fixed candidates
algorithm (FCA) [14] and the K-best algorithm. In order to
have a fair comparison same number of candidates, i.e. the
candidate list size L = 16, is considered. Fig.3(b) shows that
MTSS with counter-ML bit-flipping provides better BER per-
formance than both SSFE and FCSD. The BER performance
of K-best and FCA is better, as they are based on the K-best
criteria that uses strict-sorting based on PED at each detec-
tion layer, while MTSS uses a local-search criteria. MTSS
with m = [11112244] achieves near-MAP performance,
Fig.3(b). VHDL of the proposed design is generated using
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Fig. 3. 4 × 4 QAM-64 (a) MTSS with both Hardoutput and
Softoutput (b) MTSS compared to other MIMO detectors.

TARGET tool suite [15] and is synthesized using Cadence
RTL compiler with a 40nm standard digital cell library. Op-
erating at fclk=813MHz, the processor consumes 66.37mW
and 76.14mW power at 1.1-V supply voltage in hard and soft-
output modes, respectively. Counting a 2-input NAND gate
as one equivalent gate, the proposed design takes 584k gates
equivalent (kGE). Table 2 shows the throughput and energy
efficiency of the proposed designed in different modes. Table

Hardoutput Softoutput
m Cycles Throughput Energy Efficiency Cycles Throughput Energy Efficiency

Tc (Mbps) (pJ/bit) Tc (Mbps) (pJ/bit)
[11111111] 8 2439 27.21 31 629 120.97
[11111122] 16 1219 54.42 96 203 374.64
[11111144] 57 342 193.88 202 96 788.31
Throughput = (fclk × nbps×Nt)/Tc

Table 2. 4× 4, QAM-64 in different modes.
3 provides a comparison to recently reported MIMO detector
implementations. The proposed design is almost 7× better
in terms of energy efficiency, than our previously reported
work [4], which is basically due to the 6-bit data path and by
adding dedicated by-passing. Although, the proposed design
cannot compete with the ASIC design in terms of energy and
area efficiency (Table 3). However, the processor is capa-
ble of supporting multiple performance modes ranging from
SIC to near-ML to near-MAP. Besides, it can be configured
to support other QAM modulations QPSK and QAM-16 by
changing the firmware only, as it is C-programmable.

[16] [17] [8] [4] This Work
Process(nm) 130 130 65 40 40
Algorithm K-Best K-Best Imbalanced MTSS

K = 10 K = 10 FSD
Decision Type Hard Soft Hard Hard Hard Soft
Gate Count (kG) 114 174 88.2 6364 584
fclk (MHz) 282 270 165 700 813
Throughput (Mbps) 675 655 1980 730
Normalized 2193 2128 3217.5 730 2439 629
Throughput (Mbps) †
Power (mW) 135 195 102.7 147.16 66.37 76.14

@ 1.3 V @ 1.3 V @ 1.2 V @ 1.1 V @ 1.1 V
Normalized 29.74 42.95 53.10 147.16
Power (mW) ‡
Energy 13.55 20.18 16.50 201.58 27.21 120
Efficiency (pJ/b)
Area Efficiency 19.24 12.22 36.47 0.1147 4.17 1.07
(Mbps/kG)
† Technology scaling from process x to 40 nm fclk = (fx

clk ∗ x)/(40nm)
‡ Power is normalized using Power × (1.1V/V olt)2 × (40nm/x)

Table 3. 4× 4 QAM-64 MIMO Detector Implementations.

6. CONCLUSION

In this work, an LLR generation algorithm called counter-
ML bit-flipping is proposed. Afterwards, a C-programmable
MIMO detector architecture supporting multiple MIMO de-
tection modes with both hard and softoutput, is designed for
implementation. Implementation results for 3GPP-LTE 4 ×
4 QAM-64 show that, the proposed implementation deliv-
ers peak-throughputs of 2.43Gbps and 629Mbps in case of
hard and softoutput MIMO detection, with only 66.37mW
and 76.14mW respective power consumption. Moreover, the
proposed implementation can be configured to operate in dif-
ferent modes, with performance ranging from SIC to near-ML
to near-MAP, providing performance/energy trade-offs.
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