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ABSTRACT

Technological scaling and system-complexity scaling have dramati-
cally increased the prevalence of hardware faults, to the point where
traditional approaches based on design margining are becoming un-
viable. The challenges are exacerbated in embedded sensing appli-
cations due to constraints on system resources (energy, area). Given
the importance of classification functions in such applications, this
paper presents an architecture for overcoming faults within a clas-
sification processor. The approach employs machine learning for
modeling not only complex sensor signals but also error manifesta-
tions due to hardware faults. Adaptive boosting is exploited in the
architecture for performing iterative data-driven training. This en-
ables the effects of faults in preceding iterations to be modeled and
overcome during subsequent iterations. We demonstrate a system
integrating the proposed classifier, capable of training its model en-
tirely within the architecture by generating estimated training labels.
FPGA experiments show that high fault rates (affecting >3% of all
circuit nodes) occurring on >80% of the hardware can be overcome,
restoring system performance to fault-free levels.

Index Terms— Boosting, Circuit faults, Fault tolerance, Ma-
chine learning, Sensor systems

1. INTRODUCTION

Machine-learning algorithms are becoming increasingly important
in embedded sensing applications. Machine learning enables effi-
cient construction of data-driven models for analyzing signals that
are too complex to otherwise model analytically. Given the promi-
nence of recognition/detection functions [1], frameworks for classi-
fication and regression are of particular importance. Recently, stud-
ies have also begun to expose the potential that machine learning
brings for overcoming non-idealities (technological faults, transis-
tor variations, etc.) affecting the hardware platform itself. In [2],
an approach called data-driven hardware resilience (DDHR) is pre-
sented that enables very high levels of fault tolerance by utilizing
a machine-learning stage to model the variances in embedded data
caused not only due to the application signals but also due to hard-
ware faults. However, in DDHR the machine-learning stage is ex-
plicitly required to be fault protected. Two system demonstrations
showed that by protecting 7% | 30% of the hardware, performance
essentially equivalent to a fault-free system could thus be achieved
even with faults affecting 0.02% | 3% of the circuit nodes in the
rest of the architecture (resulting in bit error rates of 20-50%). The
problem is that the complexity of machine-learning kernels scales
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strongly with the models required [3], making their impact on a sys-
tem substantial, particularly as the hardware platform and applica-
tion signals both scale in complexity.

The aim of this work is to create an architecture for the machine-
learning stage (classifier) that is itself allowed to be greatly affected
by faults. The presented approach, termed error-adaptive classifier
boosting (EACB), takes advantage of adaptive boosting (AdaBoost)
[4], which is an iterative training algorithm applied to weak classi-
fiers. The contributions of this work are as follows: (1) we present a
classifier architecture and training algorithm wherein high-levels of
randomized hardware faults are overcome via iterative data-driven
training over weak classifiers; (2) we present a specialized circuit im-
plementation, and its various design points, to enable 80-90% of the
classifier hardware to be tolerant against faults, dramatically reduc-
ing the fault-protected hardware required in a DDHR system; (3) we
demonstrate a system in hardware via an FPGA platform, which per-
mits controlled characterization, showing that performance is con-
sistently restored even with randomized faults affecting 3% of the
classifier circuit nodes.

2. BACKGROUND

Below, DDHR is introduced to illustrate the opportunities that
machine learning enables for overcoming hardware faults via data-
driven training. Then AdaBoost is introduced, which we will exploit
in a machine-learning kernel that is itself allowed to be highly fault
prone.

2.1. Data Driven Hardware Resilience (DDHR)
The key to DDHR [2] is utilizing data from an instance of fault-
affected hardware to construct a model for classification or regres-
sion. The resulting model is called an error-aware model; while,
generally, faults occur randomly and cause unpredictable errors, the
error-aware model represents the data statistics in the presence of the
particular occurring faults. Fig. 1 shows a DDHR system for em-
bedded sensing. The fault-affected blocks (in white) include feature-
extraction processors. The fault-protected blocks (in grey) include a
support-vector machine (SVM) classifier [5] and a microcontroller
for applying and training the model, respectively. Training, how-
ever, requires labels in addition to error-affected data. The labels are
achieved entirely within the architecture by implementing a tempo-
rary error-free system on the microcontroller, which can thus employ
a generic model not requiring training to particular error statistics;
although the temporary system, implemented in software is energy
intensive and generally cannot run in real time, training is performed
infrequently, amortizing its energy, and does not require real-time
signal analysis. While the resulting labels, thus computed, are esti-
mates rather than ground truths, they enable model training that con-
verges to give performance up to that of a fault-free system. Fig. 1a
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shows the amount of fault-protected and fault-affected hardware de-
rived from RTL synthesis of a demonstration system for EEG-based
seizure detection [6].

Fig. 1b shows the error-aware model that results in the case of
actual faults (from FPGA emulation). An important characteristic of
DDHR is that, thanks to data-driven training, system performance is
not limited by the rate or magnitude of errors, but rather more fun-
damentally by the level of information retained in the error-affected
data; Fig. 1c shows the correspondence exhibited between perfor-
mance and mutual information for two demonstrated DDHR systems
[6]. A primary limitation of DDHR, however, is the need for sub-
stantial fault-protected hardware (machine-learning stages), whose
impact increases with increasing system and application-data com-
plexity due to the need for higher-order models [3]. Accordingly,
we aim to extend the error-modeling capabilities within the classi-
fier hardware itself. For this we leverage the AdaBoost algorithm,
which uses multiple weak classifiers. We show that these enable an
architecture wherein high-levels of faults can be overcome through
iterative training.
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(c) DDHR perfromance corresponds with mutual information.

Fig. 1. DDHR overcomes faults through training in fault-protected
machine-learning stages.

2.2. Adaptive Boosting (AdaBoost)
AdaBoost is a machine-learning algorithm that aims to achieve a
highly-accurate classifier through a combination of T weak classi-
fiers [4]. The output of a weak classifier is (arbitrarily) weakly cor-
related with the true class. The algorithm iteratively trains the weak
classifiers, establishing both a decision rule and a weight for each
iteration. The final hypothesis is then derived from weighted voting

over the weak classifiers. So long as each weak classifier performs
slightly better than random guessing, the performance is guaranteed
to fit a training set perfectly, given enough iterations. However, an
important consideration that remains is choosing a weak classifier
that results in low generalization error over testing data. A common
and effective weak classifier used with AdaBoost is the decision tree
[7] (training details described in [8]). Each node of the tree is a state-
ment about the feature vector being classified, thus determining the
next node to be considered, eventually yielding a classification result
at the leaf nodes.

In practical weak-classifier implementations, as in the case of
a decision tree, performance is typically limited by an inadequate
decision rule for fitting the training data [4]. In this work, the con-
cept is extended, with weak-classifier performance also being lim-
ited by errors due to hardware faults. We focus on decision trees, not
only because they are empirically shown to be effective weak clas-
sifiers, but also because they can be mapped to an implementation
that substantially mitigates the amount of control circuitry, thereby
minimizing the fault-protected hardware required. Additionally, de-
cision trees bring the benefit of comparatively simple training algo-
rithms. Nonetheless, training remains substantially more complex
than real-time classification. To perform training at run time (with
limited data), we develop an algorithm that leverages the idea of the
FilterBoost algorithm [9], but while also substantially reducing the
computations and embedded memory required. This minimizes the
overhead of an embedded trainer.

3. ERROR-ADAPTIVE CLASSIFIER BOOSTING

The aims of EACB are as follows: (1) strong classification, with
minimal hardware energy and complexity, based on scalable data-
driven training; (2) high classifier performance in the presence of
very high fault rates; (3) need for minimal fault-protected hardware,
both for classification and training. The following subsections de-
scribe the EACB architecture and implementation.

3.1. EACB Architecture
EACB is based on the following recognition. A stage whose out-
put function is determined by data-driven training over its inputs
raises the possibility of overcoming faults in the preceding stages.
The errors from faults in the preceding stages can be viewed sim-
ply as altering the statistics of the resulting data. EACB uses Ad-
aBoost, wherein the hypotheses generated by preceding weak clas-
sifiers are taken as inputs during data-driven training of subsequent
iterations. The architecture of EACB is shown in Fig. 2, consisting
of the following: (1) T fault-affected weak classifiers, implemented
as decision trees; (2) a fault-protected voter, implemented as a T -
input signed adder where the inputs and sign bits correspond to the
classifier weights and outputs, respectively; and (3) a fault-protected
trainer, which is required infrequently and is implemented via a low-
overhead microcontroller. Using AdaBoost, the weak classifiers ef-
fectively enable data-driven training in successive stages. Conse-
quently, each iteration performs training to the statistics of the hy-
potheses generated by the preceding weak classifiers in the presence
of their faults. However, as in the case of DDHR, training the weak
classifiers requires training labels. A temporary, fault-free classifier
is thus implemented in software on the microcontroller to generate
estimated labels (as in DDHR); we will show (Sec. 4) that this is ef-
fective for restoring performance to the level of a fault-free classifier.
The gate counts from RTL synthesis of a system (described in Sec.
4) are provided for the various blocks, showing that the architecture
is achieved with minimal fault-protected hardware.
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Fig. 2. Architecture of EACB.

3.2. Weak Classifiers for Maximizing Fault Tolerance
The choice and implementation of the weak classifiers strongly in-
fluences overall performance (i.e., tradeoff between accuracy and di-
versity [10]), training complexity, and achievable level of fault tol-
erance. Among the various classifiers that have been considered for
boosting (support vector machines [11], neural networks [12], deci-
sion trees [7][10]), decision trees enable reduced training complex-
ity and, as described below, enable a specialized implementation that
offers high fault tolerance within EACB.

A critical aspect for fault tolerance is a circuit’s control-path im-
plementation. While data-path faults alter the output statistics, the
probability of retaining some correlation with class information re-
mains high, as required of weak learners in AdaBoost. However,
control-path faults can result in degenerate outputs, inadequate for
even a weak classifier. Fig. 3 shows the implementation devel-
oped for the decision-tree weak classifiers, with the aim of mini-
mizing the control path while retaining the programmability needed
for EACB training. The implementation consists of three stages.
First, a node for each of the n features is implemented by digital
comparison (CMP) with a threshold derived from model training;
this has the benefit of immediately reducing the n features to n bits,
corresponding to the node outputs. Second, m n-to-1 multiplexers
(MUX) select the nodes and their locations to include in the tree,
as also derived from model training. The number of nodes is thus
limited to m. Third, the m multiplexer outputs are used as the index
to a look-up table (LUT), whose entries are also determined from
training, thereby deriving the single-bit classifier output. Although
faults result in incorrect classifier outputs, at the fault levels of in-
terest a valid decision-tree classification result is always achieved;
thus degenerate results, as can potentially be caused by control-path
faults, are avoided. Further, in this implementation, only the number
of tree nodes is limited; analysis in Sec. 4 thus considers the impact
on EACB of various sized trees.
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Fig. 3. Implementation of m-node decision-tree.

3.3. Low-overhead Embedded Trainer
The challenge with embedded training is the need for a large training
set (to address input data diversity), thus making memory require-
ments excessive. For example, a standard training algorithm [4] in
the system of Sec. 4 would require 5k feature vectors, corresponding
to 420kB of memory. We develop a training algorithm that reduces
the training-data memory through two approaches: (1) feature selec-
tion based on a learner metric; and (2) iterative training with small
but distinct training sets to mitigate generalization error. For feature
selection, each feature is ranked based on its number of occurrences
in the decision trees formed during an off-line training phase (i.e.,
for the temporary classifier of Fig. 2); the most commonly occurring
features are selected as being the most informative for classification.
For enabling small, distinct training sets, the idea of FilterBoost is
leveraged [9], wherein new training data is selected for each itera-
tion. However, for run-time training, where the only data available
is being acquired on line, we use all the acquired data to form the
training set. This in fact is critical for reducing computational com-
plexity, by avoiding the need to derive complex selection criteria,
thereby reducing the number of clock cycles of the microcontroller
by a factor of 10×. Results (Sec. 4) show that the approach gives
convergent performance with a standard training algorithm while re-
ducing the memory required by over a factor of 50×.

4. EXPERIMENTS

To evaluate EACB, we perform hardware experiments using an
FPGA. This permits error injection at desired rates and in a random-
ized manner, enabling controlled characterization. The experimen-
tation details are provided below.

4.1. Application Demonstration and Design Space
For experimental demonstration and evaluation, we apply EACB to
a system for EEG-based detection of epileptic seizures. The system
consists of a feature-extraction stage and a classifier (which employs
EACB). The features correspond to the spectral-energy distribution
of 2 EEG channels, across 7 frequency bins, over three 2-second
epochs, giving a total of 42 features [13]. The classifier consists of
the architecture in Fig. 2, with the trainer implemented via an em-
bedded OpenMSP microcontroller [14] running software for training
and label estimation. EEG data for testing (10k seconds) is obtained
from the MIT-CHB seizure database [15].

The decision-tree weak classifiers are implemented in RTL, us-
ing the topology in Fig. 3. As noted, the maximum number of nodes
in the tree is set by the topology. For design exploration, we con-
sider three cases: (1) 7-node trees; (2) 4-node trees; and (3) 1-node
trees (i.e., stumps). The metrics for evaluation include the following:
(1) the fault-rates tolerable while maintaining application-level per-
formance; (2) the amount of fault-affected and fault-protected hard-
ware; and (3) the complexity of the trainer.

4.2. Experimental Approach
The experimentation flow, based on FPGA emulation, is shown in
Fig. 4. The demonstration system is designed in Verilog RTL and
synthesized into a gate-level netlist using an ASIC logic library.
Faults are then introduced within the gate-level netlist. The fault
model we focus on is a stuck-at-1/0 fault, which is representative of
a wide range of physical faults and is appropriate for representing
limiting failures in low-energy (low-voltage) operating modes [16].
To introduce the faults, the gate-level netlist is edited (via a script) by
including (1) multiplexers on a large number of nodes (set by FPGA
mapping limits), and (2) a fault-control module within the system.
The resulting netlist is then mapped to the FPGA. Each multiplexer
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drives the corresponding node with either the intended signal from
the synthesized netlist or with a static signal fixed to logic 1/0. Both
the multiplexer select signal and the static input signal come from the
fault-control module. The fault-control module consists of a register
file that can thus programmably configure instances of faults to be
activated. Recognizing that, in addition to the rate of faults, the ac-
tual nodes affected can have a strong impact on errors, multiple (five)
randomized fault instantiations are considered for each fault rate. A
second FPGA is used strictly as an Ethernet transceiver, to load con-
figuration data into the fault-control module and to send/receive data
from the system to a host PC.

RTL of system

Verilog netlist

FPGA design

Netlist with fault-injection

Synthesize to ASIC library

Fault-affected system emulation

Insert fault control modules/muxes

Map to FPGA

Configure fault instantiations

FPGA2
(Ethernet Tx/Rx)

FPGA1
(DUT)

Fig. 4. FPGA-based flow for experimentation.

4.3. Results
Below, the measured results following design synthesis (to the ASIC
netlist) and FPGA testing are provided for the evaluation metrics.

Fault tolerance. For the three decision-tree topologies consid-
ered, faults are introduced on the circuit nodes at a rate from 0% (rep-
resenting fault-free system performance) to 3%; higher fault rates
are limited by FPGA mapping constraints. Five cases of fault in-
stantiations are considered at each rate. The measured performance
is shown in Fig. 5, both with EACB and without it (i.e., the usual
case wherein classifier training is performed offline using a standard
algorithm with the ideal weak classifiers). While the performance
without EACB degrades rapidly, with EACB the performance is con-
sistently and substantially restored for all decision-tree topologies.

Need for fault-protection. The ratio of fault-protected hard-
ware needed is impacted by the decision-tree topology in two ways:
(1) it changes the balance of hardware required for the weak clas-
sifiers versus the voter; and (2) it changes the number of iterations
T required for achieving the application-level performance. Fig. 6
shows the number of iterations and the total gate counts for the three
cases. In all cases, well over 80% of the classifier hardware can
be affected by faults while maintaining performance. Though larger
trees appear to fare somewhat better in terms of both fault-affected
hardware and total hardware (gate count), the trainer complexity (be-
low) favors smaller trees.

Trainer complexity. Though larger trees result in reduced clas-
sifier hardware, the challenge is that they require substantially more
training data during each iteration. Otherwise, they suffer substan-
tial overfitting. This strongly influences the training complexity and
the amount of embedded memory required within the trainer. As
shown in Fig. 6, stumps require just 7.2kB of memory and 0.33G
microcontroller clock cycles for training over all iterations, using

the algorithm from Sec. 3.3. 7-node trees require 13.6kB and 2.6G
clock-cycles, respectively.
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(a) system performance with stumps classifiers
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(b) system performance with 4-node trees classifiers
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(c) system performance with 7-node trees classifiers

Fig. 5. Performance with and without EACB (error bars show
worst/best performance over five fault-injected instantiations) to 3%
fault rates (higher rates limited by FPGA mapping constraints).
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Weak Learner Type
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64 22 19# Iterations T for Convergence
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Trainer memory (kB)
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Fig. 6. Comparison of EACB systems for three weak classifier
topologies.

5. CONCLUSIONS

This paper presents the approach of error-adaptive classifier boosting
(EACB), which employs iterative data-driven training to construct a
classifier that is trained to the statistics generated by errors due to its
own hardware faults. An architecture based on EACB is developed
that maximizes fault tolerance, through an implementation based on
reduced control path, and that minimizes trainer complexity, through
a modified FilterBoost algorithm. Hardware experiments using an
FPGA demonstrate the ability to overcome faults affecting 3% of
the circuit nodes, on >80% of the architecture, implying high fault
tolerance and the need for minimal fault-protected hardware.
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