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ABSTRACT

In this paper, we analyze the convergence rate of the bi-alternating

direction method of multipliers (BiADMM). Differently from

ADMM that optimizes an augmented Lagrangian function, Bi-

ADMM optimizes an augmented primal-dual Lagrangian function.

The new function involves both the objective functions and their

conjugates, thus incorporating more information of the objective

functions than the augmented Lagrangian used in ADMM. We show

that BiADMM has a convergence rate of O(K−1) (K denotes the

number of iterations) for general convex functions. We consider the

lasso problem as an example application. Our experimetal results

show that BiADMM outperforms not only ADMM, but fast-ADMM

as well.

Index Terms— Distributed optimization, alternating direction

method of multipliers, bi-alternating direction of multipliers

1. INTRODUCTION

Consider a decomposable optimization problem with a linear equal-

ity constraint

min
x,z

f(x) + g(z) subject to Ax+Bz = c, (1)

where f : Rn → R
⋃

{∞} and g : Rm → R
⋃

{∞} are closed,

proper and convex functions and (A,B, c) ∈ (Rq×n,Rq×m,Rq).
Optimization of the above problem has received considerable atten-

tion in computer science and engineering [1]. Typical applications

that involve (1) include network resource allocation [2], compressive

sensing [3], channel coding [4] and distributed computation in sen-

sor networks [5]. The main research challenge is how to reach the

optimal solution of (1) efficiently by exploiting the decomposable

structure of the objective function.

In the literature, the dual-ascent method, proposed in the mid-

1960s [6, 7, 8], is a classic approach for solving (1). The method

iteratively approaches the saddle point of the Lagrangian function by

alternating updates of the primal variables (x, z) and the Lagrange

multipliers (dual variables). However, the convergence of the dual-

ascent method requires strong assumptions on the objective function

[9, 1] like strong convexity of f(x) and g(z), making it less useful

in practical applications.

The method of multipliers was introduced to bring in robustness

to the dual ascent algorithm. The method of multipliers optimizes

an augmented Lagrangian function where a quadratic penalty func-

tion is introduced. The introduction of the penalty function, how-

ever, prevents the method for parallel updates of the primal variables.

This work was supported by the COMMIT program, The Netherlands.

ADMM solves this problem by alternately updating the primal vari-

ables in a Gauss-Seidel procedure [10, 11]. The convergence anal-

ysis of ADMM has been studied extensively in a series of papers

[12, 13, 14, 15]. It was found that ADMM is guaranteed to conver-

gence under very mild conditions. A thorough review on ADMM has

been provided in [1] by Boyd et al. In the last few years, research in-

terest has moved to find out the convergence rates of ADMM for ob-

jective functions with different functional properties (e.g., strongly

convex or not) [16, 17].

In [18], we have proposed the bi-alternating direction method

multipliers (BiADMM). Compared to ADMM, the new method opti-

mizes a different constructed function that involves both (f(x), g(z))
and their conjugates [19]. Our main motivation was to have the

function carry more information about (f(x), g(z)) than the aug-

mented Lagrangian function does for ADMM, and therefore make

BiADMM more efficient. We note that in [18], the optimal solu-

tion of (1) is found by minimizing the newly constructed function.

Later on, we noticed that such a construction makes it difficult to

characterize the convergence rate of the algorithm. In this paper,

we construct the function in a different way in order to facilitate

the convergence-rate analysis, which we refer to as the augmented

primal-dual Lagrangian function. In particular, the new function

is constructed such that the optimal solution of (1) is computed by

reaching a saddle point.

In this work, we first construct the augmented primal-dual La-

grangian function. After that we analyze the convergence rate of Bi-

ADMM for the newly constructed function. We show that for closed,

proper and convex functions, BiADMM has a convergence rate of

O(K−1), where K represents the number of iterations. We then ap-

ply BiADMM to the lasso problem to test its efficiency. Experimen-

tal results show that for the lasso problem, BiADMM outperforms

both ADMM and fast-ADMM considerably.

2. BI-ALTERNATING DIRECTION OF MULTIPLIERS

In this section, we first construct the augmented primal-dual La-

grangian function for (1). Similarly to that of [18], BiADMM fol-

lows directly from optimizing the new function.

2.1. Constructing augmented bi-conjugate function

We consider the problem (1) where the two functions f(x) and g(z)
are closed, proper and convex. The Lagrangian function associated

with (1) is defined by

Lp(x, z, δ) = f(x) + g(z) + δT (c− Ax−Bz),
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where δ is a Lagrangian multiplier (dual variable) and the subscript

p indicates that Lp is the Lagrangian of the primal problem. The

Lagrangian function is a convex function of (x, z) for fixed δ, and

a concave function of δ for fixed (x, z). Throughout the rest of the

paper, we will make the following (common) assumption:

Assumption 1. There exists a saddle point (x∗, z∗, δ∗) to the La-

grangian function Lp(x, z, δ) such that for all (x, z) ∈ (Rn,Rm)
and δ ∈ R

q we have

Lp(x
∗, z∗, δ) ≤ Lp(x

∗, z∗, δ∗) ≤ Lp(x, z, δ
∗).

The Lagrangian dual problem associated with the primal problem

(1) can be expressed as

max
δ

−f∗(AT δ)− g∗(BT δ) + δT c, (2)

where f∗(·), g∗(·), are the conjugate functions of f(·), g(·), respec-

tively, satisfying Frenchel’s inequalities

f(x) + f∗(ATλ) ≥ λTAx for all x, λ, (3a)

g(z) + g∗(BT δ) ≥ δTBz for all z, δ. (3b)

In order to decouple the joint optimization of the two conjugate func-

tions, we introduce an auxiliary variable λ and reformulate the dual

problem as

max
δ,λ

−f∗(ATλ)− g∗(BT δ) + λT c subject to λ = δ. (4)

We can construct a Lagrangian function for the dual problem (4),

which takes the form

Ld(y, δ, λ) = −f∗(ATλ)− g∗(BTδ)+λTc+ yT (δ − λ),

where the Lagrange multiplier y = Bz, which follows from the

fact that at a saddle point of Ld we have 0 ∈ ∂δLd(z
∗, δ∗, λ∗) =

−∂δg
∗(BT δ∗) + y∗. On the other hand, Frenchel’s inequality (3b)

must hold with equality so that 0 ∈ ∂δg
∗(BT δ∗) −Bz∗. Note that

Ld(z, δ, λ) is convex in z for fixed (δ, λ), and concave in (δ, λ) for

fixed z.

Given the primal and dual Lagrangian, we define the augmented

primal-dual Lagrangian function as

Lρ(x, z, δ, λ) = Lp(x, z, δ) + Ld(z, δ, λ) + hρ(x, z, δ, λ)

=f(x) + g(z)− f∗(ATλ)− g∗(BT δ)

+ δT (c− Ax) + λT (c−Bz) + hρ(x, z, δ, λ), (5)

where

hρ(x, z, δ, λ) =
ρ

2
‖c− Ax−Bz‖2 −

1

2ρ
‖λ− δ‖2,

where the parameter ρ > 0. The quadratic function hρ(x, z, δ, λ) is

imposed in (5) in order to implicitly enforce the equality constraints

described in (1) and (4). The particular arrangement of the parameter

ρ in hρ(x, z, δ, λ) facilities the convergence analysis (see Section 3).

The function Lρ(x, z, δ, λ) is convex in (x, z) for (δ, λ) fixed, and

concave in (δ, λ) for (x, z) fixed.

Similar to Lp, we have a saddle point theorem for Lρ which

states that (x∗, z∗) solves the primal problem if and only if

(x∗, z∗, δ∗, λ∗) is a saddle point of Lρ(x, z, δ, λ). To prove this

result, we need the following lemma.

Lemma 1. If (x∗, z∗, δ∗) is a saddle point of Lp(x, z, δ), then

(z∗, δ∗, δ∗) is a saddle point of Ld(z, δ, λ).

Proof. If (x∗, z∗, δ∗) is a saddle point of Lp(x, z, δ), (x∗, z∗)
solves the primal problem and δ∗ the dual problem, so that λ∗ =
δ∗.

Theorem 1 (Saddle point theorem). If (x∗, z∗) solves the primal

problem, ∃(δ∗, λ∗) such that (x∗, z∗, δ∗, λ∗) is a saddle point of

L(x, z, δ, λ). Conversely, if (x∗, z∗, δ∗, λ∗) is a saddle point of

L(x, z, δ, λ), then (x∗, z∗) solves the primal problem.

Proof. If (x∗, z∗) solves the primal problem, then there exists δ∗

such that (x∗, z∗, δ∗) is a saddle point of Lp(x, z, δ) and thus

(z∗, δ∗, δ∗) a saddle point of Ld(z, δ, λ) by Lemma 1. Hence we

have

Lρ(x
∗, z∗, δ, λ)

= Lp(x
∗, z∗, δ) + Ld(z

∗, δ, λ) + hρ(x
∗, z∗, δ, λ)

≤ Lp(x
∗, z∗, δ∗) + Ld(z

∗, δ∗, λ∗) + hρ(x
∗, z∗, δ∗, λ∗)

= Lρ(x
∗, z∗, δ∗, λ∗)

≤ Lp(x, z, δ
∗) + Ld(z, δ

∗, λ∗) + hρ(x, z, δ
∗, λ∗)

= Lρ(x, z, δ
∗, λ∗).

Conversely, suppose (x∗, z∗, δ∗) is a saddle point of Lp(x, z, δ).
Firstly, we use the saddle point (x∗, z∗, δ∗) to show that any point

(x̂, ẑ, δ̂, λ̂) such that Ax̂ + Bẑ 6= c or δ̂ 6= λ̂ is not a saddle point

of Lρ. This is because for the considered point, at least one of the

following two strict inequality holds due to the function hρ:

Lρ(x
∗, z∗, δ̂, λ̂) < Lρ(x

∗, z∗, δ∗, δ∗)

Lρ(x̂, ẑ, δ
∗, δ∗) > Lρ(x

∗, z∗, δ∗, δ∗)

Based on the above result, we conclude that the optimality condi-

tions for (x∗, z∗, δ∗, λ∗) being a saddle point of Lρ are given by

λ∗ = δ∗, Ax∗ +Bz∗ = c, 0 ∈ ∂xLρ(x
∗, z∗, δ∗, λ∗) = ∂xf(x

∗)−
ATλ∗ = ∂xLp(x

∗, z∗, δ∗), and 0 ∈ ∂zLρ(x
∗, z∗, δ∗, λ∗) =

∂zg(z
∗) − BT δ∗ = ∂zLp(x

∗, z∗, δ∗), from which we conclude

that (x∗, z∗, δ∗) is a saddle point of Lp(x, z, δ), and thus (x∗, z∗)
solves the primal problem.

Remark 1. Intuitively speaking, due to the presence of the conju-

gate functions (f∗(·), g∗(·)), Lρ carries more information about the

functions (f(·), g(·)) than the original augmented Lagrangian does

for ADMM. As a result, if the parameter ρ is set properly, BiADMM

should converge faster than ADMM. The experimental results in Sec-

tion 4 confirm this conjecture.

2.2. Alternating optimization

Given the augmented primal-dual Lagrangian Lρ, we introduce our

BiADMM in the following. The procedure is similar to our earlier

work presented in [18].

For notational convenience, let w = (xT , zT , δT , λT )T , and we

will refer to the augmented primal-dual Lagrangian as Lρ(w). We

optimize Lρ(w) by performing a Gauss-Seidel iteration. Each time

we optimize the function over some variables in w while keeping

all the others fixed. After each iteration, every variable receives a

new estimate. Note that fixing (z, δ) (or equivalently, (x, λ)), the

function Lρ(w) is decoupled w.r.t. x and λ (or equivalently, z and

δ)). One natural scheme for updating the estimates at iteration k+1
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is, therefore,

(x̂k+1, λ̂k+1) = argmin
x

max
λ

Lρ(x, ẑk, δ̂k, λ) (6a)

(ẑk+1, δ̂k+1) = argmin
z

max
δ

Lρ(x̂k+1, z, δ, λ̂k+1). (6b)

At iteration k + 1, we denote ŵk+ 1

2

= (x̂T
k+1, ẑ

T
k , δ̂

T
k , λ̂

T
k+1)

T and

ŵk+1 = (x̂T
k+1, ẑ

T
k+1, δ̂

T
k+1, λ̂

T
k+1)

T . The quantity ŵk+ 1

2

repre-

sents an intermediate estimate of w∗ at iteration k + 1. In addition,

we consider designing the stopping criterion for the iterates (6a)-

(6b). To do so, we define the objective function

p(w) = f(x) + g(z) + f∗(ATλ) + g∗(BT δ)− λT c.

One can easily show that p(w∗) = 0.

2.3. Comparison to fast-ADMM

In this subsection, we briefly discuss the fast-ADMM, first proposed

in [20] (which was originally named as Symmetric Alternating Di-

rection Augmented Lagrangian Method). Our main motivation is to

point out the relationship between BiADMM and fast-ADMM.

The augmented Lagrangian function for the primal problem (1)

takes form of [20]

Lp,ρ(x, z, δ) = Lp(x, z, δ) +
ρ

2
‖c− Ax−Bz‖2, (7)

where ρ > 0. Given (7), fast-ADMM updates the estimate

(x̂k+1, ẑk+1, δ̂k+1) at iteration k + 1 as follows [20]:

x̂k+1 = argmin
x

(Lp,ρ(x, ẑk, δ̂k)) (8a)

δ̂k+ 1

2

= δ̂k + ρ(Mx̂k+1 − ẑk) (8b)

ẑk+1 = argmin
z

(Lp,ρ(x̂k+1, z, δ̂k+ 1

2

)) (8c)

δ̂k+1 = δ̂k+ 1

2

+ ρ(Mx̂k+1 − ẑk+1). (8d)

As opposed to the updates (8a)-(8d), ADMM does not have the inter-

mediate update (8b) for δ. Instead, δ̂k+1 is computed only after both

x̂k+1 and ẑk+1 are computed. Since fast-ADMM captures more re-

cent information of x̂ and ẑ, it naturally accelerates ADMM.

By inspection of the updates for BiADMM and fast-ADMM,

we conclude that both methods involve four computations at each

iteration. The update (8b) corresponds to the computation of λ̂ in

(6a). Note that with (fast)ADMM the δ update is a gradient-ascent

step, whereas with BiADMM the δ and λ updates are obtained by

coordinate ascent.

3. CONVERGENCE ANALYSIS

In this section, we show that BiADMM has a convergence rate of

O(1/K) for general closed, proper and convex functions. The main

mathematical tool that we will use in our proof is the variational

inequality (VI), which is widely applied in the convergence analysis

of ADMM [17, 21]. We have the following result.

Theorem 2. Define F T(w) =
(

−δTA,−λTB, (Ax− c)T , (Bz)T
)

.

Let w̄K = 1

K

∑K

k=1
ŵk. We have

0 ≤ p(w̄K) + (w̄K − w∗)TF (w̄K) ≤ O(K−1). (9)

In order to prove this result, we need the VI corresponding to

(5), which we present in the lemma below.

Lemma 2. Let w∗ = (x∗, z∗, δ∗, λ∗) denote a saddle point of

Lρ(w). Then

p(w) + (w −w∗)TF (w) ≥ 0,

where equality holds if and only if

0 ∈ ∂xf(x)− ATλ∗

0 ∈ ∂zg(z)−BT δ∗

0 ∈ ∂λf
∗(ATλ)− Ax∗

0 ∈ ∂δg
∗(BT δ)−Bz∗

. (10)

Proof. Given w∗, we have

p(w) + (w − w∗)TF (w)

= f(x) + g(z) + f∗(ATλ) + g∗(BT δ) + δ∗
T
c

− δ∗
T
Ax− λ∗TBz − δT (c− Ax∗)− λT (c−Bz∗)

= f(x) + g(z) + f∗(ATλ) + g∗(BT δ) + δ∗
T
c

− λ∗TAx− δ∗
T
Bz − λTAx∗ − δTBz∗, (11)

where the last equality holds since Ax∗ + Bz∗ = c and δ∗ = λ∗.

Using Frenchel’s inequalities (3a) and (3b), we conclude that

−λ∗TAx ≥ −f(x)− f∗(ATλ∗),

−δ∗TBz ≥ −g(z)− g∗(BT δ∗),

−λTAx∗ ≥ −f(x∗)− f∗(ATλ),

−δTBz∗ ≥ −g(z∗)− g∗(BT δ),

(12)

from which we conclude, using (11), that

p(w) + (w − w∗)TF (w) ≥ −p(w∗) = 0,

where equality holds if and only if we have equality in (12) and thus

if and only if (10) holds.

We are now in the position to prove Theorem 2.

Proof of Theorem 2. From (6a)-(6b), the VIs for ŵk+1 are given by:

∀w ∈ R
n+m+2q

0 ≤ f(x)− f(x̂k+1)

−
(

δ̂k + ρ(c− Ax̂k+1 −Bẑk)
)T

A(x− x̂k+1) (13a)

0 ≤ g(z)− g(ẑk+1)

−
(

λ̂k+1 + ρ(c− Ax̂k+1 −Bẑk+1)
)T

B(z − ẑk+1) (13b)

0 ≤ g∗(BT δ)− g∗(BT δ̂k+1)

−
(

c− Ax̂k+1 + (1/ρ)(λ̂k+1 − δ̂k+1)
)T

(δ − δ̂k+1) (13c)

0 ≤ f∗(ATλ)− f∗(AT λ̂k+1)

−
(

c−Bẑk − (1/ρ)(λ̂k+1 − δ̂k)
)T

(λ− λ̂k+1). (13d)
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Adding (13a)-(13c) and substituting w = w∗ yields

p(ŵk+1)− p(w∗) + (ŵk+1 − w∗)TF (ŵk+1)

≤
1

ρ

(

ρAx∗ + λ∗ − (ρAx̂k+1 + λ̂k+1)
)T

·
(

(ρBẑk − δ̂k − ρc)− (ρBẑk+1 − δ̂k+1 − ρc)
)

− ρ‖Ax̂k+1 +Bẑk+1 − c‖2 − (1/ρ)‖λ̂k+1 − δ̂k+1‖
2

=
1

2ρ
‖ρ(Ax∗ +Bẑk − c) + (λ∗ − δ̂k)‖

2

−
1

2ρ
‖ρ(Ax∗ +Bẑk+1 − c) + (λ∗ − δ̂k+1)‖

2

−
1

2ρ
‖ρ(Ax̂k+1 +Bẑk+1 − c)− (λ̂k+1 − δ̂k+1)‖

2

−
1

2ρ
‖ρ(Ax̂k+1 +Bẑk − c) + (λ̂k+1 − δ̂k)‖

2. (14)

Since both p(w) and (w − w∗)F (w) are convex functions of w,

summing (14) over k and applying Jensen’s inequality yields

p(w̄K)−p(w∗) + (w̄K −w∗)TF (w̄K)

≤
1

2ρK
‖ρ(x∗ +Bẑ0 − c) + (λ∗ − δ̂0)‖

2
2

= O(K−1).

4. APPLICATION TO LASSO PROBLEM

In this section, we consider solving the lasso problem [22] by using

BiADMM. This example confirms that BiADMM is more efficient

than ADMM and fast-ADMM.

The lasso problem originates from bioinformatics and machine

learning, and can be expressed as

max
δ,λ

(

−
1

2
‖Mλ− b‖22 − α‖δ‖1

)

subject to λ = δ, (15)

where M is a n × q matrix (q > n), and α > 0 is a regularization

parameter. Note that the above problem formulation is of the form

(2). The corresponding dual problem can be formulated as

min
x,z

(

1

2
‖x‖22 + bTx+ IS(z)

)

subject to MTx = z, (16)

where IS(z) is the the indicator function on S = {|z| � α} and

is the conjugate function of α‖δ‖1. The symbol � denotes compo-

nentwise inequality. In practice, one can either solve (15) or (16) by

using ADMM or fast-ADMM.

4.1. Experimental results

In the experiment, we set (n, q) = (60, 100) and α = 1.1. The

elements in (M,b) were generated randomly from a normal Gaus-

sian distribution. Both ADMM and fast-ADMM were applied to the

minimization problem (16). We mainly investigated the number of

iterations needed for each algorithm under a particular error crite-

rion.

The convergence results are displayed in Figure 1. Each point

in the figure for a particular ρ is obtained by averaging over 200

realizations of (M, b). For each realization of (M, b), all the three
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Fig. 1. Convergence comparison of ADMM, fast-ADMM and Bi-

AMM for 0.06 ≤ ρ ≤ 0.28.

algorithms share the same initialization of ŵ0. In order to terminate

the iterations, we define an error criterion at iteration k + 1 as

ǫk+1 =
1

2

(

|p(ŵk+ 1

2

)|+ |p(ŵk+1)|
)

.

Hence, convergence of BiADMM implies ǫk = 0 as k → ∞. In

particular, we set the threshold for ǫk ≤ 10−5 for stopping the al-

gorithms. For ADMM and fast-ADMM, the component λ̂ in ŵ was

replaced with δ̂ when computing ǫk .

By inspection of Figure 1, we conclude that BiADMM con-

verges faster than ADMM and fast-ADMM on average. This phe-

nomenon may be due to the fact that the augmented primal-dual La-

grangian function Lρ(w) is more informative about (f(·), g(·)) than

the augmented primal Lagrangian function Lp,ρ(x, z, δ), making Bi-

ADMM more efficient. Further, one observes that the parameter ρ
has a big impact on the convergence speeds of the three algorithms.

The optimal ρ values are roughly the same for the three algorithms,

which is around ρ = 0.12. This suggests that in practice, the param-

eter ρ has to be set properly to gain convergence efficiency.

5. CONCLUSION

In this paper, we have analyzed the convergence rate of BiADMM.

To facilitate the analysis, we construct the augmented primal-dual

Lagrangian function. We have shown that for general closed, proper

and convex functions, BiADMM possesses a convergence rate of

O(K−1). Experimental results demonstrate that BiADMM outper-

forms both ADMM and fast-ADMM for the lasso problem.
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