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ABSTRACT

In this paper, we extend the Nyquist-Shannon theory of sampling to

signals defined on arbitrary graphs. Using spectral graph theory, we

establish a cut-off frequency for all bandlimited graph signals that

can be perfectly reconstructed from samples on a given subset of

nodes. The result is analogous to the concept of Nyquist frequency

in traditional signal processing. We consider practical ways of com-

puting this cut-off and show that it is an improvement over previous

results. We also propose a greedy algorithm to search for the small-

est possible sampling set that guarantees unique recovery for a signal

of given bandwidth. The efficacy of these results is verified through

simple examples.

Index Terms— Graph signal processing, sampling theorem,

spectral graph theory

1. INTRODUCTION

Representation, processing and analysis of large-scale data as signals

defined on graphs has drawn much interest recently. Graphs allow us

to embed natural inter-connectivities between data points and exploit

them during processing. As a result, graph signal processing has laid

a strong foothold in various application domains such as machine

learning [1], sensor networks [2] and image processing [3, 4, 5].

Although powerful, this research area is still in its infancy. Recent

efforts have therefore focused on translating well-developed tools of

traditional signal processing for handling graph signals (see [6] for a

comprehensive overview).

Sampling theory is one aspect of graph signal processing that

is still not fully understood. In traditional signal processing, given a

signal of bandwidth f and a (uniform) sampling rate fs, the Nyquist-

Shannon sampling theorem gives the condition for unique recovery

of the signal from its samples as f < fs/2. If the bandwidth is given,

the required sampling rate can be easily calculated and vice-versa.

Analogous results relating the bandwidth and the required sampling

density have also been proposed for irregular sampling [7]. In graph

signals, the notion of frequency is introduced via the eigenvalues and

eigenvectors of the graph Laplacian. Posing a sampling theorem in

this context is challenging because graph signals do not necessar-

ily lie in regular Euclidean spaces. For example, downsampling in

discrete-time signals involves dropping every other sample. More-

over, such downsampling leads to a frequency folding phenomenon

that we can leverage to state the sampling theorem. However, we

cannot define such a sampling pattern for arbitrary graphs, i.e., drop-

ping “every other vertex” is not a well-defined notion in this context.

Naturally, to frame a sampling theorem for graphs, we need to con-

sider the following questions. Firstly, what is the maximum possible

bandwidth (the cut-off frequency) of a graph signal such that it is

This work was supported in part by NSF under grant CCF-1018977.

uniquely sampled onto a given subset of nodes, and conversely, what

is the smallest possible subset of nodes on which a signal of given

bandwidth is uniquely represented by its samples.

Sampling theory for graph signals has been studied before. In

the case of bipartite graphs, downsampling on one of the colored

partitions leads to an effect analogous to frequency folding [8]. This

gives the cut-off frequency and also suggests a natural sampling

strategy. For arbitrary graphs, [9] gives a sufficient condition that

the sampling set needs to satisfy for unique recovery. Using this

condition, a bound on the maximum bandwidth of all recoverable

signals is given in [10]. The problem of downsampling on arbitrary

graphs is considered in [11] in the context of multi-scale transforms.

However, this work does not give a method to search for sampling

sets that guarantee unique recovery of signals of given bandwidth.

In this work, we address both the questions required for a com-

plete sampling theorem. We first present a necessary and sufficient

condition for unique recovery of a bandlimited signal from its sam-

ples. We then provide a novel, computationally tractable method of

computing the cut-off frequency for a given sampling set and show

that our result is an improvement over previous work. Additionally,

we provide a novel algorithm for choosing the smallest possible sam-

pling set for a given bandwidth using a greedy heuristic. The rest of

the paper is organized as follows: in Section 2, after briefly review-

ing prior work, we formulate the sampling theorem for graph signals

and give practical ways of using it. In Section 3, we provide simple

experiments to back our proposed theory and conclude with future

directions in Section 4.

2. SAMPLING THEORY IN GRAPHS

2.1. Background and notation

We start by introducing the notations used throughout this paper.

A simple, connected, undirected, and weighted graph G = (V, E)
consists of a set of nodes V = {1, 2, . . . , N} and edges E =
{(i, j, wij)}, i, j ∈ V , where (i, j, wij) denotes an edge of weight

wij between node i and j, with wii = 0. The degree di of a node i
is the sum of the edge-weights connected to node i, and the degree

matrix of the graph consists of degrees of all the nodes arranged in a

diagonal matrix D = diag{d1, d2, . . . , dN}. The adjacency matrix

W of the graph is an N × N matrix with W(i, j) = wij and the

Laplacian matrix is L = D −W. We shall use the symmetric nor-

malized form of the adjacency and the Laplacian matrices defined

as W = D−1/2WD−1/2 and L = D−1/2LD−1/2 respectively.

L is a symmetric positive semi-definite matrix and has a set of real

eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 2 and a corresponding

orthogonal set of eigenvectors denoted as U = {u1,u2, . . . ,uN}.
We denote a subset of nodes of the graph as a collection of in-

dices S ⊂ V , with Sc = V \ S denoting its complement set. A

restriction of a matrix A to rows in set S1 and columns in set S2
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is denoted by the submatrix (A)S1,S2
and for the sake of brevity

AS,S = AS . A graph signal is defined as a scalar valued discrete

mapping f : V → R, such that f(i) is the value of the signal on

node i. Thus a graph signal can also be represented as a vector f

in R
N , with indices corresponding to the nodes in the graph. The

downsampling operation on a graph signal f is defined as the re-

striction of the signal f to a certain subset of nodes S known as the

downsampling set, and the downsampled signal is denoted by f(S),
which is a vector of reduced length |S|.

It is known that the eigenvalues and eigenvectors of L provide

a spectral interpretation (i.e. a notion of frequency) for a graph sig-

nal, similar to the Fourier transform in traditional signal process-

ing. The eigenvalues of L can be thought of as frequencies - a high

eigenvalue results in higher variation in the corresponding eigenvec-

tor [6]. The graph Fourier transform (GFT) of a signal f is defined

as its projection onto the eigenvectors of the graph Laplacian, i.e.

f̃(λi) = 〈f ,ui〉, or more compactly, f̃ = UT f . In this setting, an

ω-bandlimited signal on a graph is defined to have zero GFT co-

efficients for frequencies above its bandwidth ω, i.e. its spectral

support is restricted to the set of frequencies [0, ω]. The space of

all ω-bandlimited signals is known as the Paley-Wiener space and is

denoted by PWω(G) [9]. Note that PWω(G) is a subspace of RN .

2.2. Prior work

To formulate the sampling problem for arbitrary graphs, it is useful

to state the concept of uniqueness sets [9]:

Definition 1 (Uniqueness set). A subset of nodes S ⊂ V is a

uniqueness set for the space PWω(G), if for any two signals from

PWω(G), the fact that they coincide on S implies that they coincide

on V , i.e., ∀ f ,g ∈ PWω(G), f(S) = g(S)⇒ f = g

The definition above implies that sampling onto the set S is a one-

to-one operation for an ω-bandlimited signal and thus it is sufficient

to know its values on the uniqueness set S. Based on this definition

and the work of [9], the following theorem was proposed in [10] to

estimate the cut-off:

Theorem 1. For a graph G with normalized Laplacian matrix L, a

set S is a uniqueness set for all signals f ∈ PWω(G) if ω < ω∗
S

with ω∗
S = σmin, where σ2

min is the smallest eigenvalue of (L2)Sc .

This theorem gives only a sufficient condition and does not guaran-

tee that the estimated cutoff-frequency is the best possible, given S.

Therefore, we would like to give a necessary and sufficient condition

for S to be a uniqueness set and provide a practical way to improve

the estimate of the cut-off frequency.

The work of [11] suggests a method for graph downsampling,

based on the polarity of components of the largest Laplacian eigen-

vector, for designing two-channel filterbanks. However, this method

does not address the downsampling problem in the context of the

sampling theorem, namely, choosing sampling sets that guarantee

unique recovery of signals of given bandwidth.

2.3. Cut-off frequency

To derive a stronger condition for a subset of nodes to be a unique-

ness set for ω-bandlimited signals, we observe the following:

Lemma 1. S is a uniqueness set for signals in PWω(G) if and only

if PWω(G) ∩ L2(S
c) = {0}, where L2(S

c) is the space of all

graph signals that are zero everywhere except possibly on the subset

of nodes Sc, i.e., ∀φ ∈ L2(S
c), φ(S) = 0.

Proof. Given PWω(G) ∩ L2(S
c) = {0}, assume that S is not a

uniqueness set. Then, there exist f ,g ∈ PWω(G), f 6= g such that

f(S) = g(S). Hence, we have f − g ∈ L2(S
c), f − g 6= 0. Also,

f − g ∈ PWω(G) due to closure. But this is a contradiction as

PWω(G) ∩ L2(S
c) = {0}. Therefore S must be a uniqueness set.

Conversely, we are given that S is a uniqueness set. Let φ be

any signal in PWω(G) ∩ L2(S
c). Then, for any f ∈ PWω(G),

we have g = f + φ ∈ PWω(G) and f(S) = g(S). But since S
is a uniqueness set, one must have f = g, which implies φ = 0.

Therefore, PWω(G) ∩ L2(S
c) = {0}.

The lemma above gives us various insights. Firstly, we note that

the set L2(S
c) is equal to the null space N (DS) of the downsam-

pling operator DS : RN → R
|S|, since φ(S) = 0, ∀φ ∈ L2(S

c).
Enforcing PWω(G) ∩ N (DS) = {0} ensures that downsampling

signals from PWω(G) onto the set S leads to a one-to-one map-

ping, and thus allows unique reconstruction. Secondly, we get a hint

on estimating the cut-off frequency for signals such that they have S
as a uniqueness set – choose PWω(G) such that ω is less than the

minimum possible bandwidth of all signals in L2(S
c). This would

ensure that no signal from L2(S
c) can be a part of PWω(G). Let

ω(f) be the bandwidth of a signal f (i.e. the largest among eigenval-

ues corresponding to non-zero GFT coefficients of f ). We now state

the following theorem:

Theorem 2 (Sampling Theorem). For a graph G, with normalized

Laplacian L, a subset of nodes S ⊂ V is a uniqueness set for signals

f ∈ PWω(G) if and only if

ω < inf
φ∈L2(Sc)

ω(φ)
△
= ωc(S) (1)

We call ωc(S) the true cut-off frequency.

To use the theorem above, we first need a tool to compute the band-

width ω(φ) of any given signal φ. This can be done trivially using

the GFT. However, since we also need to minimize the bandwidth

over all signals in L2(S
c), we propose an alternate method for band-

width estimation by defining the following quantity:

Definition 2 (Spectral moments). For any signal f 6= 0, we define

its kth spectral moment ωk(f) with k ∈ Z
+ as

ωk(f)
△
=

(

f tLkf

f tf

)1/k

=

(

N
∑

i=1

λki
f̃(i)2

∑N
j=1 f̃(j)

2

)1/k

(2)

We call these quantities “spectral moments” because they are the

moments of graph frequencies with respect to the signal’s energy

distribution. ωk(f) can be shown to increase monotonically with k:

∀f , k1 < k2 ⇒ ωk1(f) ≤ ωk2(f) (3)

These moments are bounded from above, hence limk→∞ ωk(f) ex-

ists for all f . Consequently, it is easy to prove that if ω(f) denotes

the bandwidth of a signal f , then

∀k > 0, ωk(f) ≤ lim
j→∞

ωj(f) = ω(f) (4)

This gives us an important insight: the spectral moment of a signal,

for a finite but large k, has a value close to (but less than) the actual

bandwidth of the signal, i.e., it essentially indicates the frequency

localization of the signal energy. Therefore, using ωk(φ) as a proxy
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for ω(φ) (i.e. bandwidth of φ) is justified and this leads us to define

the cut-off frequency estimate of order k as

Ωk(S)
△
= inf
φ∈L2(Sc)

ωk(φ) = inf
φ∈L2(Sc)

(

φtLkφ

φtφ

)1/k

(5)

We note that this cut-off has a form analogous to the minimum

Dirichlet eigenvalue of the sub-graph Sc [12]. Using the definitions

of Ωk(S) and ωc(S) along with (3) and (4), we conclude that for

any k1 < k2:

ωc(S) ≥ lim
k→∞

Ωk(S) ≥ Ωk2(S) ≥ Ωk1(S) (6)

This equation has significant implications: Firstly, as we increase

the value of k, Ωk(S) tends to give a better estimate of the cut-off

frequency. Note that Ω2(S) is exactly equal to the cut-off derived in

Theorem 1 - this means for any k > 2, the estimated cut-off is better

than previously stated in [10]. Secondly, Ωk(S) is always less than

the actual cutoff ωc(S), thus ensuring stable reconstruction. This is

because if S is a uniqueness set for PWω1
(G) and ω1 > ω2, then

PWω2
(G) ⊆ PWω1

(G) and hence S is also a uniqueness set for

PWω2
(G) (from Lemma 1). Using (6) and Theorem 2, we give the

following proposition:

Proposition 1. For all k, S ⊂ V is a uniqueness set for PWω(G)
if ω < Ωk(S). Ωk(S) can be computed from (5) as

Ωk(S) =

[

inf
ψ

ψt(Lk)Scψ

ψtψ

]1/k

= (σ1,k)
1/k

(7)

where σ1,k denotes the smallest eigenvalue of the reduced matrix

(Lk)Sc . Further, if ψ1,k is the corresponding eigenvector, and φ∗
k

minimizes ωk(φ) in (5) (i.e. it approximates the smoothest possible

signal in L2(S
c)), then

φ∗
k(S

c) = ψ1,k, φ∗
k(S) = 0 (8)

Finally, we also note from (6) that one simply needs a higher k to

get a better estimate of the true cut-off frequency. Therefore, there

is a trade-off between accuracy of the estimate on the one hand, and

complexity and numerical stability on the other (that arise due to the

term L
k). Once we have an estimate of the cut-off, interpolation can

be performed using techniques proposed in [10, 13, 14].

2.4. Smallest sampling set

Now, we turn to the converse question: given a signal f of cer-

tain bandwidth ωc, what is the smallest set Sopt so that the signal

is uniquely represented by f(Sopt). If Kc represents the number of

eigenvalues of L below ωc, then by dimensionality considerations

|Sopt| ≥ Kc. Also, note that Sopt may not be unique. Formally, if we

use Theorem 2 and relax the true cut-off ωc(S) by Ωk(S), then Sopt

can be found from the following optimization problem:

Minimize
S

|S| subject to Ωk(S) ≥ ωc (9)

This is a combinatorial problem because we need to compute Ωk(S)
for every possible subset S. We therefore formulate a greedy heuris-

tic to get an estimate Sest of the optimal sampling set. Starting with

an empty sampling set S (Ωk(S) = 0) we keep adding nodes (from

Sc) one-by-one while trying to ensure maximum increase in Ωk(S)
at each step. The hope is that Ωk(S) reaches the target cut-off ωc
with minimum number of node additions to S. To achieve this, we

Algorithm 1 Greedy heuristic for estimating Sopt

Input: G = {V, E}, L, bandwidth ωc, some k ∈ Z
+

Initialize: S = {∅}, ω = 0.

1: while ω ≤ ωc do

2: For S, compute cut-off estimate Ωk(S) and corresponding

smoothest signal φ∗
k ∈ L2(S

c) using Proposition 1.

3: ω ← Ωk(S), v ← arg maxi(φ
∗
k(i))

2.

4: S ← S ∪ v.

5: end while

6: Sest ← S .

first tackle the combinatorial nature of our problem by defining the

following matrix

M
α
k (t)

△
= L

k + α D(t), k ∈ Z
+, α ≥ 0, t ∈ R

N
(10)

where D(t) is a diagonal matrix with t on its diagonal. Let λαk (t)
denote the smallest eigenvalue of Mα

k (t) and let 1S : V → {0, 1}
denote the indicator function for the subset S (i.e. 1(S) = 1 and

1(Sc) = 0). Then, one has

λαk (1S) = inf
x

(

xtLkx

xtx
+ α

x(S)tx(S)

xtx

)

(11)

Note that the right hand side of the equation above is simply an un-

constrained regularization of the constrained optimization problem

in (5). When α ≫ 1, the components x(S) are highly penalized

during minimization. Thus, if xαk (1S) is the minimizer in (11), then

[xαk (1S)](S)→ 0, i.e. the values on nodes S tend to be very small.

Therefore, for α≫ 1, we have

φ∗
k ≈ x

α
k (1S), Ωk(S) ≈ (λαk (1S))

1/k
(12)

By introducing λαk (t), we have essentially allowed two relaxations

in the computation of Ωk(S). Firstly, rather than strictly forcing val-

ues of φ on S to be zero, we allow them to be vanishingly small.

Secondly, we allow a binary relaxation in the argument t, similar to

the relaxation used in graph cut problems, to understand the varia-

tion in λαk (t) with t. These relaxations circumvent the combinato-

rial nature of our problem and have been used earlier to study graph

partitioning based on Dirichlet eigenvalues [15, 16]. The effect of

adding a node to S on Ωk(S) at each step can now be understood by

observing the behavior of the gradient vector ∇tλ
α
k (t) at t = 1S .

Let xαk (t) be the normalized eigenvector of Mα
k (t) corresponding

to λαk (t), then

M
α
k (t)x

α
k (t) = λαk (t)x

α
k (t) (13)

Differentiating both sides with respect to the ith component of t, then

multiplying both sides with xαk (t)
t , we get

dλαk (t)

dt(i)
= x

α
k (t)

t dM
α
k (t)

dt(i)
x
α
k (t) (14)

= x
α
k (t)

t d (αD(t))

dt(i)
x
α
k (t) = α ([xαk (t)](i))

2
(15)

where [xαk (t)](i) denotes the ith component of the eigenvector

xαk (t). Therefore, at point t, ∆λαk ≈ α ([xαk (t)](i))
2 ∆t(i). Sub-

stituting t = 1S and using equation (12), we have

dλαk (t)

dt(i)

∣

∣

∣

∣

t=1S

= α ([xαk (1S)](i))
2 ≈ α(φ∗

k(i))
2

(16)

The equation above gives us the desired greedy heuristic - starting

with an empty S (i.e. 1S = 0), if at each step, we include the
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node on which the smoothest signal φ∗
k ∈ L2(S

c) has maximum

energy (i.e. 1S(i) ← 1, i = arg maxj(φ
∗
k(j))

2), then λαk (t) and in

effect, the cut-off estimate Ωk(S), tend to increase maximally. We

summarize the method for estimating Sopt in Algorithm 1.

We note that in the algorithm, computing the first eigen-pair of

(Lk)Sc is the most complex step for each iteration. There are many

efficient ways of computing the smallest eigen-pair of a matrix [17],

thus allowing the algorithm to be practically feasible. The number of

iterations to find Sc scales linearly with the number of eigenvalues

(Kc) below ωc. Also, with each iteration, the set Sc shrinks, giving

us a bonus reduction of complexity.

Since, Ωk(S) underestimates the true cut-off, we may end up

with a larger S than necessary. Another issue is that in the early

iterations, using a large k to estimate Ωk(S) and φ∗
k may result in

numerical instabilities because the set S is small. A solution for this

would be to adaptively increase k over the course of iterations. One

can also consider numerically stable alternatives to the optimization

problem in (5).

3. EXPERIMENTS

In this section, we present simple examples to test the effectiveness

of the proposed sampling theory. For our experiments, we first gen-

erate four varieties of simple, connected, and undirected graphs:

G1: Bipartite graph V = V1∪V2 withN = 100, |V1| = 40, |V2| =
60, random weights wij ∼ U(0, 1), sparsified using k-NN,

k = 6. Nodes in V1 are numbered 1 to 40 while nodes in V2
are numbered 41 to 100.

G2: Regular cyclic graph with N = 100, number of neighbors

K = 8 and weights ∝ 1/distance (assuming evenly spaced

and numbered nodes on a circle).

G3: Erdős-Rényi random graph with N = 100, p = 0.2, weights

wij ∼ U(0, 1) if i and j are connected.

G4: Watts-Strogatz ‘small-world’ model [18], unweighted, with un-

derlying lattice graph N = 100,K = 8 and rewiring proba-

bility β = 0.1.

In the first experiment, we randomly generate a subset of nodes S
of certain size for each graph and compare the cut-off estimate from

Proposition 1 to that of Theorem 1 [10]. The results are summa-

rized in Table 1. In all cases, it is observed that a higher value of

k (> 2) gives better results. The behavior of the cut-off estimate

versus k for the particular case of G1 is shown in Figure 1. Note

that Ωk(S) increases monotonically with k. In practice, we observe

that the computation becomes numerically unstable for large k. For

the second experiment, we fix a signal bandwidth ωc = 0.8 for each

graph and estimate Sopt using Algorithm 1. The number of nodes

required for sampling is summarized in Table 2. We note that as k
increases, |Sest| approaches Kc.

For our third experiment, we consider the problem of choos-

ing a subset of nodes S of given size |S| = K that maximizes the

cut-off frequency. This problem is potentially useful for designing

critically sampled filter-banks on graphs. We halt the iterations of

our algorithm once a subset of required size is obtained. The in-

dicator function of the subset for two graphs G1 and G2 is plotted

in Figure 2. For the bipartite graph G1 with |Sopt| = |V1| = 40,

we observe from Figure 2(a) that our algorithm successfully chooses

most nodes from one of the two colored partitions, in accordance

with earlier results [19]. In the cyclic graph G2, we downsample by

a factor of two with |Sopt| = N/2 = 50 and observe that roughly

alternate nodes are selected (Figure 2(b)). This is expected because

the eigenvector basis for cyclic graphs is the DFT basis and selecting

alternate nodes guarantees unique recovery of signals spanned by the

first N/2 eigenvectors.

Table 1. Cut-off frequency estimates for a given subset of nodes.

Graph |S|
Theorem 1 Proposed method

(k = 2) k = 6 k = 12 k = 18
G1 25 0.2815 0.4070 0.4684 0.5040

G2 40 0.1236 0.3077 0.4696 0.5427

G3 25 0.4643 0.6292 0.6756 0.7029

G4 25 0.2313 0.4716 0.6469 0.7106

Table 2. Estimated sampling set Sest for bandwidth ωc = 0.8.

Graph Kc
|Sest| using Algorithm 1

k = 6 k = 12 k = 18
G1 36 42 41 41

G2 41 49 46 45

G3 24 42 35 32

G4 19 30 24 22
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Fig. 1. Behavior of cut-off estimate Ωk(S) with k for G1.
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Fig. 2. Indicator functions of Sopt with k = 18 for (a) bipartite graph

G1, |Sopt| = |V1| = 40 (b) cyclic graph G2, |Sopt| = N/2 = 50.

4. CONCLUSIONS

In this paper, we considered the theory of sampling for signals de-

fined on arbitrary graphs using spectral graph theory. Employing the

concept of uniqueness sets, we proposed methods to compute the

analogs of “Nyquist frequency” and “Nyquist rate” in the context of

graph signals. Our results are both novel and practical, and provide

a trade-off between accuracy and complexity that one can exploit

based on the application at hand. Future work would involve consid-

ering robustness to noise in sampling. Another direction would be to

look at sampling sets for arbitrary bands of frequencies. This could

potentially help us design critically sampled filter-banks on arbitrary

graphs.
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