
A MULTIDIMENSIONAL SIGNAL PROCESSING APPROACH
TO WAVE DIGITAL FILTERS

WITH TOPOLOGY-RELATED DELAY-FREE LOOPS

Tim Schwerdtfeger and Anton Kummert

Faculty of Electrical, Information and Media Engineering,
University of Wuppertal, 42119 Wuppertal, Germany.
Email: {schwerdtfeger; kummert}@uni-wuppertal.de

ABSTRACT

To avoid the occurrence of noncomputable, delay-free loops, clas-
sic Wave Digital Filters (WDFs) usually exhibit a tree-like topology.
For the realization of prototype circuits that contain ring-like subnet-
works, prior approaches require the decomposition of the structure
and thus neglect the notion of modularity of the original Wave Dig-
ital concept. In this paper, a new modular approach based on Multi-
dimensional Wave Digital Filters (MDWDFs) is presented. For this,
the contractivity property of WDFs is shown. On that basis, the new
approach is studied with respect to possible side-effects and an ap-
propriate modification is proposed that counteracts these effects and
significantly improves the convergence behaviour.

Index Terms— Wave Digital Filter, Contractivity, Delay-Free
Loop, Multidimensional, Bridged-T Model

1. INTRODUCTION

The Wave Digital Filter theory [1] provides an elegant approach to
the real-time capable simulation of analog circuits, ranging from
virtual analog modeling in audio processing [2] to the numerical
solving of different types of partial differential equations [3]. All
these applications benefit from the marked similarity of an electri-
cal prototype circuit to the corresponding Wave Digital (WD) struc-
ture, where, in particular, numerous favourable properties as passiv-
ity, stability and robustness are preserved in the WD model. Ad-
ditionally, following the basic notion of translating circuit elements
and their interconnection topology to corresponding minimal build-
ing blocks that may be recombined into a readily computable digi-
tal structure, the original WD concept is strictly modular (i.e. with
reusable elements) and topology-preserving. This is achieved with
two central definitions: First, the discretization of the complex fre-
quency variables ψν , ν = 1, ...,m is realized by means of the
bilinear transform,

ψν =
2

Tν

zν − 1

zν + 1
, (1)

where Tν represents the unit time step in the ν-th time/space
variable tν . Second, for an arbitrary electrical port with port re-
sistance R > 0, current I and voltage U , so-called wave variables

A = U +RI

B = U −RI
, (2)
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where A and B denote incident and reflected waves, respectively,
are introduced. Here, all variables in capital letters indicate steady-
state quantities and correspond to instantaneous quantities denoted
in lower case. In conjunction with the Kirchhoff laws of conserva-
tion, equations (1) and (2) allow for a multitude of WD elements to
be derived. This includes lossless blocks that take care of the in-
terconnection (e.g. parallel or serial connections) of WD elements,
so-called adaptors, which basically are implementations of the lo-
cal scattering matrices. For a comprehensive review, the reader is
referred to [1].

To obtain a realizable model, i.e. a structure without any delay-
free directed loops, the bidirectional wave connection between two
WD elements has to be terminated reflection-free on at least one side.
Unfortunately, for the classic parallel and serial adaptors, typically
just one port can be constrained to exhibit no such direct reflection,
which limits the realizable structures to such of tree-like form [2].
On the other hand, there are many interesting circuits that, if rewrit-
ten to solely consist of serial and parallel connections, contain one
or more ring-like subnetworks and thus are not representable by the
classic WDF approach without introducing macroscopic (i.e. non-
local) delay-free loops.

In prior work, a derivation procedure of adaptor structures for
generalized connection networks is given in [4]. The resulting spe-
cialized multi-port adaptors again exhibit just one reflection-free port
at most, so the reusability for more complex structures is question-
able. Other approaches base on global scattering matrix or state
space formulations and thus omit the notion of modularity of the
original WD concept entirely [5], [6].

In this paper, a modular approach to address the problem of
delay-free macroscopic loops is presented which is derived from
MDWDF principles and utilizes a fixed point iteration scheme. For
this purpose, first the contractivity properties of general WDFs are
studied, which previously has been mentioned only for a special-
ized local problem in [7]. Then, the new approach is analysed and
a modified version with much improved convergence characteristics
is presented. Finally, a concrete example is given and analysed.

2. CONTRACTIVITY OF WAVE DIGITAL FILTERS

Given a metric space (M,d) with metric d, a mapping ϕ : M →M
is called contraction, if there exists a λ ∈ [0, 1[ with the property
that for all x, y ∈M the Lipschitz condition

d(ϕ(x), ϕ(y)) ≤ λ · d(x, y) (3)

holds. It can be shown that such self-mappings converge to a unique
fixed point x∗ ∈ M under iteration [8], which solves the implicit
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relation ϕ(x∗) = x∗. Similarly, if equation (3) just holds for λ ∈
[0, 1], ϕ is called a nonexpansive map, which is weaker in that it
does not allow conclusions about the existence of fixed points. For
a deeper insight into the topic, the reader is referred to textbooks
like [8].

To investigate the contractivity properties of general (nonlinear)
WDFs it is feasible to first analyse a strictly linear foundation WDF:
Let Ai and Bi, i = 1, . . . , n, be the incident and reflected steady-
state waves, respectively, of an n-port MDWDF network with
corresponding finite port resistances Ri > 0. For practical rea-
sons this circuit is assumed to be passive but not lossless. Let
G = diag

(√
G1, . . . ,

√
Gn
)

, Gi = 1/Ri , A = (A1 · · ·An)T ,
B = (B1 · · ·Bn)T and ϕ(A) = B be the linear map that asso-
ciates incident and reflected waves. Now, for the L2-norm and the
Mahalanobis metric dG(x,y) =

√
(x− y)T GTG (x− y) with

positive definite GTG, the steady-state pseudopower P absorbed
by that n-port according to [9], [1] can be written as

P =

n∑
i=1

(
|Ai|2 − |Bi|2

)
Gi

!
> 0 (4)

⇔ P = ‖GA‖22 − ‖GB‖22 > 0 (5)

⇔ ‖GA‖22 > ‖GB‖22 = ‖Gϕ (A)‖22 , (6)

and with A := A′ −A′′ and the linearity of ϕ we have

⇔
∥∥G (A′ −A′′)∥∥2

2
>
∥∥G (ϕ (A′)− ϕ (A′′))∥∥2

2
(7)

⇔ dG
(
A′,A′′)2 > dG

(
ϕ
(
A′) , ϕ (A′′))2 (8)

⇔ dG
(
A′,A′′) > dG

(
ϕ
(
A′) , ϕ (A′′)) (9)

⇔
∃λ ∈ [0, 1[ :

λ · dG
(
A′,A′′) ≥ dG (ϕ (A′) , ϕ (A′′)) . (10)

Clearly, an arbitrary lossy, linear WDF is contractive and thus,
for constant input, converges towards a unique fixed point under it-
eration. Note that in order to include lossless circuits, there exists a
similar relationship with substitution of “≥” in equation (4), which
corresponds to a nonexpansive map in equation (10).

Furthermore, in the analogous description of pseudopower for
instantaneous waves ai and bi and this time a nonlinear ϕ, equations
(4) and (10) are generally just related by “⇐”, so passivity is a result
of contractivity in this nonlinear case, but not the other way around.
From here, similar to the interconnection considerations with re-
spect to passivity in [9], this contractive foundation n-port can be
extended with further contractive or nonexpansive (analogous to pas-
sive and lossless, respectively) structures without losing the contrac-
tivity property1, as a composition of contractions and nonexpansive
maps remains contractive. So the composition of contractive and
nonexpansive WD elements always yields a contractive WD struc-
ture as long as there is at least one lossy and thus contractive ele-
ment present, forcing the Lipschitz constant of the system to drop
below 1. This includes general multi-port nonlinear contractions as
well. Note though that a direct proof for nonlinear WDFs is not pos-
sible by means of the instantaneous and steady-state pseudopowers p
and P as in [9], [1], respectively, since there is neither a steady-state
description for memoryless nonlinear elements nor an appropriate
instantaneous representation for frequency-dependent elements.

1with the exception of degenerated cases where a lossless structure is con-
nected formally but the resulting structure is equivalent to at least two mutu-
ally independent systems

3. APPLICATION TO PROBLEMATIC WDFS

Consider a lossy (m-1)-dimensional WD network with at least one
macroscopic loop, e.g. a WDF with ring-like topology. Such a struc-
ture is generally not realizable by means of the original construction
principles, where the successive interconnection of the reflection-
free port of one adaptor to a port with direct reflection of an adjacent
adaptor leads to a tree-like network [2]. In ring-type structures, this
connection scheme would result in at least three implicit loops: One
for each signal of the bi-directional wave connection, respectively,
and a third for the port resistance, which is inherited from stage to
stage. Based on that, to break the latter relation, assume an arbitrary
fixed common port resistance Rc > 0 for two connected wave ports
ν and µ involved in this loop. Obviously, this introduces another
local delay-free wave loop between both adaptor ports. Generally,
in addition to sharing this port resistance Rc, ports ν and µ must
fulfill Aν = Bµ and Aµ = Bν to be connected [9]. For vectors
Ac = (Aν , Aµ)T and Bc = (Bν , Bµ)T , this connection may be
expressed as a linear map2

ϕc (Ac) :=

(
0 1
1 0

)
Ac = Bc , (11)

which is clearly lossless and thus nonexpansive. In order to break
both local and macroscopic loops simultaneously, a vectorial unit
delay ϕu (A) = z−1

m A with dimensionless stepsize Tm = 1 may
be introduced with respect to an artificial, additional dimension tm.
The composition

ϕu (ϕc (Ac)) = z−1
m

(
0 1
1 0

)
Ac =: B̂c , (12)

where B̂c denotes the new wave variable fed back to the rest of
the WD structure, can, again, be shown easily to yield a lossless,
nonexpansive relation (cf. [9]). For structures with multiple local
or macroscopic loops, this approach may be extended directly to
an arbitrary number of wave connections l = 1, . . . , N by vec-
torial concatenation XN := (X1

T · · ·XN
T )T , resulting in sim-

ilar maps ϕNc (AN ) =
(
ϕc(A1)T · · ·ϕc(AN )T

)T
= BN and

ϕNu (BN ) = z−1
m BN , which again are lossless and nonexpansive.

That way, any wave-based implicit relation can be made explicit and
thus realizable.

From here, with the findings of section 2, the resulting struc-
ture can be interpreted as a composition of a contractive map (the
lossy foundation WDF) and two nonexpansive maps (ϕNc and ϕNu ),
which, for constant input, converges towards the correct solution to
the non-realizable original WDF under iteration along tm. Finally,
this solution may, after having fallen below a given error threshold,
be read out on the hyperplane tm = D · Tm > 0.

Note that the general idea of introducing a delay to break non-
computable loops isn’t new in itself (cf. [2], [10]), but without as-
signing it to an artificial extra-dimension, as proposed in this paper,
reactance-like behaviour and thus barely controllable errors have to
be expected.

3.1. Similarity to Multidimensional Wave Digital Filters

The resulting structure in fact closely resembles a traditional multi-
dimensional WDF, with the exception that the outputs of the original

2note that in order to match the conventions of section 2, wave variables
Ac denote the waves travelling into the connection, not the respective ports.
Likewise, Bc denote the respective reflected waves.
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WD elements with memory, especially delay elements, form inputs
to the fixed point iteration and thus have to be held constant along tm
to ensure a clean convergence. But as has been presented for a simi-
lar approach in [11], correct convergence is likely to take place even
by means of standard MDWDF, i.e. when all elements with memory
are allowed to act in their original multidimensional sense. Here, an
obvious negative side-effect is introduced by the system’s dynamic
along all dimensions but tm, which is applied even to intermediate
values of the fixed point iteration, thus distributing this unwanted in-
formation to successive time (or space) steps. This means that for a
standard MDWDF, convergence is likely to take more iteration steps
the longer the simulation is running, thereby depending largely on
the decay characteristics of the original system. Apart from that,
the similarity to MDWDF offers a straight forward construction ap-
proach that is entirely modular and allows the easy to read WDF
notation to be used throughout.

3.2. Improved Multidimensional Approach

The approach presented in the following is based upon the multidi-
mensional WDF principles mentioned, but employs modified delay
elements to stop the aforementioned system’s dynamic on interme-
diate values, making it independent with respect to the simulation’s
duration, and to fasten up convergence by utilizing its contractiv-
ity property. It is extendable to multidimensional prototype sys-
tems in principle, but depends on the processing sequence here and
thus is not available in closed-form. Therefore, it is presented for a
one-dimensional system that is extended by an artificial dimension
m = 2 to solve the original computability problem.

First, assume a constant simulation length of D steps with re-
spect to the artificial t2-direction, whereas the time t1 remains un-
bounded. To cut the unwanted dynamic, the values of the delays in
t1-direction are simply held constant along the t2-axis according to

bT1(k1, k2) = aT1(k1 − 1, D − 1),

k2 = 0, . . . , D − 1,
(13)

where aT1 and bT1 denote the delay’s in- and output, respectively,
which corresponds to a discrete sample and hold element that is re-
freshed every D steps. Note though that its values are sampled at
k2 = D − 1, where the system’s state, per construction, already
should have approached an equilibrium state. This ensures a clean
fixed point iteration scheme. Furthermore, the delays in t2-direction
are modified as well: Here, by re-iterating the WD structure, a fixed
point is approached and fed back via

bT2(k1, k2) =

{
aT2(k1, k2 − 1) , k2 = 1, . . . , D − 1

aT2(k1 − 1, D − 1) , k2 = 0

(14)

as a starting value to the next t1-sample’s fixed point iteration. Due
to the nature of contractive mappings, a reasonably close starting
value may speed up convergence a lot. So, for non-erratic signals,
even if D is chosen too small and convergence has a significant re-
maining error, the starting value for the next sample in general is
better than some constant boundary value. With this approach, con-
vergence can be balanced between a longer iteration length D or
more error along the time axis t1. Obviously, for constant input and
perfect convergence, the starting value is already the solution of the
fixed point scheme at any t1-step. Similarly, for low-frequency in-
puts it is already close, leading to a fast convergence, which is further
helped by anti-aliasing techniques like upsampling.

Note that a sample and hold element in its hold state, replacing
the delay element of e.g. a capacitor, corresponds to a WD resis-
tive source, where the input to the element is omitted and a constant
source value is fed back. As the system’s contractivity is a global
property, it is invariant with respect to the addition of a constant and
so the Lipschitz condition (3) holds here as well.

Clearly, the proposed modifications are not passive in the con-
ventional sense, but are lossless at least for constant input. And since
it has been shown that the circuit settles towards a constant state of
equilibrium along the iteration axis t2, instabilities are unlikely to
occur in that case.

4. EXAMPLE: BRIDGED-T NOTCH FILTER

R1

+

Uout

C1

C2
R2 R3

R4

Uin

a b

c

d

Fig. 1. Prototype circuit with bridged-T topology

To give a classic example to the presented approach, the linear
bridged-T filter depicted in Fig. 1 is analysed in the following. For
Ri = R, i = 1, . . . , 4, it yields a notch-type frequency response
with regard to input and output voltages Uin and Uout, respectively.
In this example, the valuesR = 10kΩ, C1 = 10nF and C2 = 1µF
have been chosen.

4.1. Derivation of a Wave Digital Structure

To derive a Wave Digital Structure from a schematic like in Fig. 1,
it is advisable to separate the circuit elements from their connection
network as depicted in Fig. 2(a) first. While this equivalent structure
is still denoted in Kirchhoff domain, the elements’ connectivity is
dissected into discrete parallel and serial connections, respectively,
which already resembles the appearance of the resulting WDF. To
achieve and verify such a respresentation, it is sensible to focus on
the circuit’s nodes, i.e. nodes a, b, c, d in this example, indicated
in both figures 1 and 2(a). Clearly, the resulting structure has a
ring-like topology, which hinders a direct translation into a corre-
sponding WDF. But, with the findings of sections 2 and 3, a readily
computable WDF can be derived, shown in Fig. 2(b). With the intro-
duction of an artificial bidirectional delay to the ring-structure, the
occurrence of delay-free loops can be avoided. Here, the modified
delay elements as presented in section 3.2 are utilized, denoted by
double borders for the T1 elements and bold borders for the delays
T2, respectively.

Additionally, note that due to the original sign convention of the
serial adaptor [1], a direct replacement of the serial connections in
Fig. 2(a) with the corresponding adaptor is not possible, as voltages
here are measured counterclockwise, denoted by red arrows here.
This leads to a sign inversion at every serial adaptor in the loop,
which, due to the odd number of serial adaptors, has to be compen-
sated by a voltage inverter, realized by means of simple sign inver-
sion of the respective wave variables (cf. [12]). For the same reason,
the output voltage Uout appears with inversed sign.
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(a) Rewritten prototype circuit
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(b) WDF realization

Fig. 2. Bridged-T circuit as in Fig. 1 with explicit ring-like topology in Kirchhoff domain (a) and the proposed WDF realization (b).
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Fig. 3. Simulation results. (a): Frequency response of the resulting WDF with matched impedances Rc = Rz . Reference and WDF
simulations produce virtually identical results after D = 3 iterations. (b) and (c): Convergence characteristics of MDWDF and improved
approach for a deliberate mismatch Rc = 100 · Rz and Uin = −cos(2π · 20 · t1) and D = 100. The proposed improvements clearly
accelerate convergence.

4.2. Specific Convergence Characteristics

One unobvious property of the artificial port resistance Rc intro-
duced in section 3, representing a free parameter up to now, is its
strong influence on convergence speed. Here, it is advisable to
impedance-match to the rest of the circuit to prevent unnecessary
direct reflections in the local loop containing the inserted bidirec-
tional delay from happening. This value Rz can be obtained by
means of traditional network analysis, but has to be calculated with
the actual port resistance values used in the simulation in place of
Kirchhoff impedances. In this example, this leads to Rz ≈ 13.8 kΩ
for the chosen samplerate Fs = 40kHz. By matching Rc = Rz ,
the proposed method yields a frequency response as depicted in Fig.
3(a) after a mere D = 3 iterations. The correctness of this is easily
verified, as the result is virtually identical to the reference simulation
generated with Simulink SimPowerSystems, shown superimposed
in Fig. 3(a) as well.

For a deliberate mismatch Rc = 100 ·Rz , convergence speed is
much slower, as shown for cosine input in Fig. 3(b) for the unmod-
ified MDWDF approach and in Fig. 3(c) for the proposed improved
approach, respectively. Both simulations converge towards the same
solution, but the improved approach does so almost instantaneously
for slowly changing input. Note that, as expected, the initial jump at

t1 = 0 makes both methods converge at a similar rate for this first
time step, requiring more than the chosen D = 100 iterations.

5. CONCLUSION

In the present paper, a multidimensional approach to overcome
topology-induced delay-free loops in Wave Digital structures has
been presented. In comparison to prior methods, this approach has
the advantage of maintaining the modularity property of the Wave
Digital concept. To achieve an appropriate theoretical fundament,
the contractivity properties of Wave Digital Filters have been stud-
ied. It could be shown that, on a basis of a linear foundation WDF,
every lossy WD structure is contractive and can be extended with
further contractive (or just nonexpansive) elements, which is similar
to the concept of passivity known from the general Wave Digital
principles. On that basis, general construction considerations have
been made and possible negative side-effects have been brought up.
To counteract the latter, a modified multidimensional approach has
been introduced, basically representing a structurally modular and
easy to implement fixed point iteration scheme. Finally, a concrete
example has been given, confirming the former findings.
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