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ABSTRACT

We consider the problem of anomalous cluster detection

(ACD) on a graph under the elevated mean Gaussian model,

where each node is associated with a feature. Under the null

hypothesis, features are i.i.d. standard Gaussian, while under

the alternative, there is an unknown connected cluster of n-

odes whose features are i.i.d. Gaussian with positive mean

and unit variance instead. For this problem the GLRT scan

statistic is usually adopted; however there are very few prac-

tical algorithms that target arbitrarily connected clusters. We

formulate this problem as an integer program (IP) in terms

of indicator variables, and characterize the connectivity of a

cluster by a linear matrix inequality (LMI) constraint. We

then propose a convex relaxation of the IP together with a

rounding scheme, leading to a completely convex formula-

tion for computing the scan statistic over arbitrarily connected

clusters. Synthetic and real experiments justify our idea.

Index Terms— Anomalous Cluster Detection, Connec-

tivity, Semi-Definite Programming

1. INTRODUCTION

Anomalous cluster detection (ACD) on a graph refers to the

problem of detecting whether or not there is a connected clus-

ter of nodes that behave differently from the rest nodes of the

graph. Such a problem has been extensively studied [1, 2, 3, 4,

5, 6]. Usually ACD is formulated as a hypothesis testing prob-

lem embedded in a graph G = (V,E), where each node i is

equipped with an independent random variable xi. In this pa-

per we focus on the elevated mean Gaussian model, where the

goal is to distinguish between the null hypothesis that obser-

vations over all nodes come from i.i.d. standard normal dis-

tribution: xi ∼ N(0, 1), ∀i ∈ V , against the alternative that

observations of nodes on an unknown connected subgraph,

S ⊂ V , involve some signal strength: xi ∼ N(μ, 1), ∀i ∈ S,

for μ > 0. [4] has shown that under some conditions the test

of rejecting the null hypothesis for large values of the follow-

ing scan statistic is statistically optimal or near-optimal:

max
S∈Λ

: η(S) =
∑

i∈S

xi/
√
|S| (1)

where Λ = {S ⊆ V : S is connected}, and f is the indicator

of S, i.e. fi = 1 for i ∈ S and 0 otherwise.

While existing work mainly focuses on statistical decision

aspects of the problem, they usually consider relatively sim-

ple graph structures, and only scan simple clusters including

rectangles, circles or nearest-neighbor balls [7, 8, 9]. Our mo-

tivation of searching for arbitrarily connected clusters come

from real applications. For example, consider the problem

of disease outbreak detection [10, 11] shown in Fig.1. A dis-

ease outbreak could happen around a river, leading to elevated

numbers of disease cases in those spatially adjacent counties

near the river, which form an irregular connected cluster with-

in the graph representation. Other problems such as surveil-

lance and network intrusion can also be cast in this manner.

However, for arbitrary shapes the simulated annealing method

Fig. 1. County map of northeast U.S. and its graph representation.

Shaded counties in the lower panel, which refer to Hudson River re-

gion, represent a possible disease outbreak. The nodes correspond-

ing to these counties form an irregularly shaped connected cluster.

[12, 11] seems to be the only viable algorithm, which requires

multiple restarts and often many iterations to converge. The

spectral scan statistic method [13] based on graph regulariza-
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tion does not restrict cluster shapes, but it can not guarantee

connectivity. Moreover this method favors balanced partition-

s with small conductance, which may not be the case as in

Fig.1. In contrast, our method allows for arbitrary connected

subgraphs with explicit control on size.

The main contribution of this paper is to present a convex

program for computing the scan statistic Eq.(1) over arbitrar-

ily connected clusters. We first formulate it as an integer pro-

gram (IP), and characterize the connectivity constraint S ∈ Λ
in terms of a linear matrix inequality (LMI) constraint. We

then propose a convex relaxation to the IP problem, together

with a novel rounding scheme that refines for a better combi-

natorial solution. Synthetic and real experiments demonstrate

the efficacy of our idea.

2. ANOMALOUS CLUSTER DETECTION UNDER
ELEVATED MEAN GAUSSIAN MODEL

Let G = (V,E) be an undirected graph with n nodes |V | = n,

the unweighted adjacency matrix A and unnormalized Lapla-

cian matrix L. Let S ⊂ V be indicated by f ∈ {0, 1}n. ACD

under the elevated-mean Gaussian model can be formulated

into a composite hypothesis testing problem. Specifically, the

observation xi of node i follows standard normal distribution

under the null hypothesis H0 : xi ∼ N(0, 1), ∀i ∈ V . The

alternative hypothesis is H1 =
⋃

S∈Λ H1,S , and each H1,S

is parameterized by S: H1,S : xi ∼ N(μ, 1), ∀i ∈ S; xi ∼
N(0, 1), ∀i /∈ S, where μ > 0 is signal strength, and S is

some unknown connected anomalous cluster: S ∈ Λ.

Let S(f) denote the subgraph indicated by f . The scan

statistic Eq.(1) can be rewritten in terms of f as:

max
f∈{0,1}n,S(f)∈Λ

: η(f) =
f ′x√
f ′1n

. (2)

Note that η(f) is not concave in f , which makes the ob-

jective non-convex, not to mention the binary nature of f . We

propose to convexify the objective by transforming the prob-

lem into a 2-step procedure, which involves first solving a

family of sub-problems parameterized by size of S, followed

by a model selection step.

Algorithm 1: Computing Scan Statistic (IP)
Input: n observations {x1, . . . , xn} of the nodes, adjacency

matrix A, size parameter set K.

1. For different values of k ∈ K, solve:

max
f∈{0, 1}n,S(f)∈Λ

: f ′x s.t. f ′1n ≤ k (3)

Let S(k) denote the obtained cluster with parameter k.

2. Select the best cluster in terms of η(S) over various k:

S∗ = arg max
S(k),k∈K

: η(S(k)). (4)

Output: the selected connected cluster S∗.

Lemma 1. Let S0 = argmaxS∈Λ η(S) denote the optimal
solution. If |S0| ∈ K, then S∗ = S0.

When the size parameter set K is rich enough, the above

procedure is equivalent to the original Eq.(2). In Sec.3 we

provide a convex characterization of the connectivity con-

straint S ∈ Λ, which leads to a convex relaxed SDP problem.

3. CONNECTIVITY & CONVEX RELAXATION

In this section we characterize connectivity of S, and provide

a convex relaxation to the IP subroutine Eq.(3).

3.1. Characterizing Connectivity

Our main theorem characterizes the necessary and sufficient

condition for sub-graph connectivity.

Theorem 2. Given G = (V,E), let S(f) ∈ V be the node
set selected by f ∈ {0, 1}n. Denote F = ff ′. Then S forms
a connected cluster if and only if for some positive scalar γ,

Q(f ; γ) = Q(F ; γ) 	 0, (5)

where Q(F ; γ) = diag ((A ◦ F − γF )1n)− A ◦ F + γF , ◦
denotes entry-wise matrix multiplication, and Q 	 0 denotes
Q is positive semi-definite.

We sketch the proof here. We first “select” the induced

adjacency matrix AS , thus the Laplacian LS of S using F .

Courant-Fischer theorem is applied to characterize the 2nd

smallest eigenvalue λ2(S) = λ2(LS). By spectral graph the-

ory [14] S is connected if and only if λ2(S) > 0. Applying

Finsler’s Lemma then converts the condition into an LMI. De-

tails are omitted due to lack of space.

Eq.(5) is in terms of F = ff ′. We can use the equivalent

f = diag(F ) to replace f in the objective of Eq.(3). The

next corollary shows that γ in Eq.(5) and the size parameter k
parameterize the collection of all connected sub-graphs Λ.

Corollary 3. Let Λk = {S ∈ Λ : |S| = k} be the set of
connected clusters of size k. Let λ2(Λk) = minS∈Λk

: λ2(S).
F is defined in Thm.2. Then Λk is fully characterized by:

Λk = {S ⊂ V : Q(F ; γ) 	 0, diag(F )′1n = k}, (6)

where γ ≤ λ2(Λk)/k is a constant.

Remark: (1) Each feasible integer variable F satisfying

Eq.(6) corresponds to a connected cluster in Λk, and vice ver-

sa. Solving an IP problem with constraints in Eq.(6) is equiv-

alent to searching over S ∈ Λk. (2) It is well-known that

λ2(S) [14] is related to the conductance of S which charac-

terizes how well S is connected. Intuitively this implies that

setting a larger γ restricts the search to only thicker clusters,

while small γ allows irregular thin shapes.
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3.2. Convex Relaxation & Rounding Scheme

Notice that the variable matrix F in Eq.(5) is binary and has

rank one: F = ff ′, f ∈ {0, 1}n. We propose the following

linear relaxation to the integer variable F :

0 ≤ Fij = Fji ≤ Fii ≤ 1, ∀i �= j (7)

Fij − Fii − Fjj + 1 ≥ 0, ∀i �= j

It is obvious that every binary rank-one matrix satisfies

Eq.(7). On the other hand, the first constraint enforces Fij =
0 if either node i or node j is not selected. When both are

selected (Fii = Fjj = 1), the second inequality ensures

Fij = 1 to approximate indicator matrix F = ff ′.
Next we present a rounding scheme to convert the con-

tinuous solution diag(F ) back to a combinatorially feasible

solution, i.e. a connected cluster S ∈ Λ.

Algorithm 2: Rounding
Input: continuous solution diag(F ).

1. Let S = {i : Fii > 0}| with L = |S|. Sort v ∈ S in

descending order: Fv1v1 ≥ . . . ≥ FvLvL
.

2. For l = 1, 2, . . . , L, do:

• Let Vl = {v1, . . . , vl}. Note that Vl may not be

connected.

• Apply a depth-first search (DFS) from v1 within

Vl to find the connected cluster Sl containing v1.

3. Among {Sl, l = 1, 2, . . . , L}, select the best cluster:

S∗ = argmaxl : η(Sl).

Output: the selected connected cluster S∗.

The intuition is that while keeping connectivity, it can lead

to better objective to remove those nodes with small values of

Fii, which have less contribution to the objective.

The complete algorithm is outlined below.

Algorithm 3: Computing Scan Statistic (convex program)
Input: n observations {x1, . . . , xn} of the nodes, adjacency

matrix A, size parameter set K.

1. For different values of k ∈ K:

• Solve the following SDP problem:

max : diag(F )′x (8)

s.t. Q(F ; γ) 	 0

0 ≤ Fij = Fji ≤ Fii ≤ 1, ∀i �= j

Fij − Fii − Fjj + 1 ≥ 0, ∀i �= j

diag(F )′1n ≤ k

• Apply rounding (Algorithm 2) on the solution

F (k) and obtain the connected cluster S(k).

2. Select the best cluster in terms of η(S) over various k:

S∗ = arg max
S(k),k∈K

: η(S(k)). (9)

Output: the selected connected cluster S∗.

4. EXPERIMENTS

In this section we present experiments on both synthetic

and real data sets. We compare our exact connectivity (EC)

method (Algorithm 3) against scanning rectangles (Rect) [9]

and several other approaches listed below.

Alternative Approaches:
The simulated annealing [12] is the only algorithm capable

of searching for arbitrarily connected clusters. It propagates

a region by heuristically adding/removing one node at each

ietaration. We denote this algorithm as SA.

[6] proposes to directly estimate signal strength by penal-

izing an edge-lasso regularization term:

min
x̂

: ||x− x̂||2 + λ||Bx̂||1 (10)

where B is the oriented incidence matrix. Details can be

found in [6]. We denote this method by L1R-a.

A variant is to augment the edge-lasso penalizing term to

our objective, which we denote by L1R-b:

min
0≤f≤1

: −f ′x+ λ||Bf̂ ||1, s.t. f ′1n ≤ k (11)

[13] proposes a graph Laplacian regularization method

to search for anomalous clusters with small RatioCut values.

However, their method only works when the cluster is com-

pletely balanced, i.e. approximately of size n/2. A similar

method in our setting, which is denoted by L2R, amounts to:

min
0≤f≤1

: −f ′x+ λf ′Lf, s.t. f ′1n ≤ k (12)

Notice that none of above regularization methods explic-

itly imposes connectivity. So we apply the same heuristic

rounding step (Algorithm 2) to the continuous result (x̂ for

L1R-a, f for L1R-b and L2R) to generate connected cluster-

s. We vary parameters γ, k and λ to obtain the best solution

through the model selection step of Algorithm 3.

Synthetic Detection Experiment:
We conduct ACD experiments on a 8×10 lattice with an

irregularly shaped anomalous cluster (12 nodes) shown in

Fig.2. 200 null/alternative tests are carried out respectively,

with Gaussian noise level σ = 1 and different values of signal

strength μ. We threshold the resulting scan statistic values us-

ing different thresholds to generate ROC curves and compute

AUC. We illustrate AUC against normalized SNR: μ
√|S|/σ

in Tab.1. Our EC performs as well as SA, which is roughly

enumerating and can be viewed as optimal, and significantly

outperforms all other methods.

Recovery for Disease Outbreak Dataset:
We apply our framework for the setting of disease outbreak

detection as in [11]. We use real population data from geo-

graphic counties (129 counties) of northeastern U.S., includ-

ing Massachusetts, New York, Vermont, Maine, New Hamp-

shire, Connecticut and Rhode Island shown in Fig.4(a). The

3884



Normal
Anomaly

(a) Ground truth

����������	

�


��������




	


�


�


�


�


�


(b) Observed case rate

1 1.5 2
x 105

0

0.05

0.1

0.15

0.2

0.25

Population constraint k

S
ca

n 
st

at
is

tic

(c) scan statistic vs. size constraint

(d) Recovery result (small k) (e) Recovery result (large k)

Fig. 3. (a) shows the county map of northeastern U.S. including 7 states, with ground-truth clusters corresponding to Connecticut River

region (left) and New England coast (right). (b) shows the observed case/population rates of each county. (c) plots the scan statistic G vs.

population constraint parameter k, which has two flat parts, the lower shown in (d) and the higher in (e). We set Fii = 1 of the pink county

which has the highest case/population rate, indicating we want to search for connected regions around this county.
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Fig. 2. 80-node lattice with the ground-truth anomalous cluster.

ground truth reveals disease outbreak in two areas: Connecti-

cut River region (left part) and New England coast (right part).

We consider ACD under Poisson model where the anoma-

Table 1. AUC performance on lattice of various algorithms with

different normalized SNR: μ
√|S|/σ.

AUC
normalized SNR

3 3.5 4.5 5.5

EC 0.8787 0.9188 0.9641 0.9924
SA 0.8679 0.9077 0.9574 0.9763

Rect 0.8125 0.8573 0.9282 0.9658

L1R-a 0.8639 0.9037 0.9640 0.9877

L1R-b 0.8259 0.8738 0.9405 0.9786

L2R 0.8610 0.9058 0.9610 0.9805

lous cluster consist of counties that have higher Poisson rate

than normal counties. [4] establishes similar scan statistic

to Eq.(1) that performs well. Let N and C be the popula-

tion and disease case vector respectively. We can apply the

same Algorithm 3 with modifications for Eq.(8) on objective:

max : diag(F )′C, and the size constraint: diag(F )′N ≤ k.

For simulation we generate numbers of cases Ci in

each county from Poisson distribution with parameter Niλi,

where λi = 5 × 10−5 for normal counties and λi =
2 × 10−4 for anomalous counties. Fig.3(b) shows the em-

pirical case/population rates. We then apply EC to detect the

outbreaks. We plot the scan statistic G against the population

threshold k in (c). This curve has two flat regions, the lower

corresponding to Connecticut River region (d), and the higher

corresponding to the globally optimal cluster (e) which links

Connecticut River region with New England coast.

Remark: (1) Our method is able to find irregularly-shaped

connected clusters. Furthermore, by constraining the size,

multiple clusters are identified from the statistic-size plot. (2)

SA only recovers the large cluster similar to Fig.3(e) and is

not sufficiently flexible to deal with multiple outbreak region-

s. In addition our recovery results also appear to be sparse

and clean compared to other regularization methods (omitted

due to lack of space), which favor thick shapes and typically

contain large number of false alarms (i.e. counties that are

not part of the outbreak). (3) Currently our method can deal

with up to 300 nodes, due to computational barriers in solv-

ing SDP. For large graphs one can perform a coarse search

before applying our method on the local patch for a refined

search. Future directions include developing fast alternating

algorithms for solving the subroutine Eq.(8).

3885



5. REFERENCES

[1] Addario-Berry, N. Broutin, L. Devroye, and G. Lugosi,

“On combinatorial testing problems,” in The Annals of
Statistics, 2010, vol. 38, pp. 3063–3092.

[2] E. Arias-Castro, D. Donoho, and X. Huo, “Near-optimal

detection of geometric objects by fast multiscale meth-

ods,” in IEEE Transactions on Information Theory,

2005, vol. 51, pp. 2402–2425.

[3] E. Arias-Castro, E. J. Candes, H. Helgason, and

O. Zeitouni, “Searching for a trail of evidence in a

maze,” in The Annals of Statistics, 2008, vol. 36, pp.

1726–1757.

[4] E. Arias-Castro, E. J. Candes, and A. Durand, “Detec-

tion of an anomalous cluster in a network,” in The An-
nals of Statistics, 2011, vol. 39, pp. 278–304.

[5] A. Singh, R. Nowak, and R. Calderbank, “Detecting

weak but hierarchically-structured patterns in network-

s,” in Artificial Intelligence and Statistics, 2010.

[6] J. Sharpnack, A. Rinaldo, and A. Singh, “Sparsistency

of the edge lasso over graphs,” in Artificial Intelligence
and Statistics, 2012, vol. 22, pp. 1028–1036.

[7] J. Glaz, J. Naus, and S. Wallenstein, Scan Statistics,

Springer, New York, 2001.

[8] M. Kulldorff, L. Huang, L. Pickle, and L. Duczmal, “An

elliptic spatial scan statistic,” in Statistics in Medicine,

2006, vol. 25.

[9] D. J. Marchette and C. E. Priebe, “Scan statistics for in-

terstate alliance graphs,” in Connections, 2008, vol. 28,

pp. 43–64.

[10] G. P. Patil and C. Taillie, “Geographic and network

surveillance via scan statistics for critical area detec-

tion,” in Statistical Science, 2003, vol. 18, pp. 457–465.

[11] L. Duczmal, M. Kulldorff, and L. Huang, “Evaluation

of spatial scan statistics for irregularly shaped clusters,”

in Journal of Computational and Graphical Statistics,

2006, vol. 15, pp. 428–442.

[12] L. Duczmal and R. Assuncao, “A timulated annealing

strategy for the detection of arbitrarily shaped spatial

clusters,” in Computational Statistics and Data Anal-
ysis, 2004, vol. 45, pp. 269–286.

[13] J. Sharpnack, A. Rinaldo, and A. Singh, “Changepoint

detection over graphs with the spectral scan statistic,” in

arXiv: 1206.0773v1, 2012.

[14] F. Chung, Spectral graph theory, American Mathemat-

ical Society, 1996.

3886


