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ABSTRACT

This paper presents a study on complex cepstrum-based speech fac-

torization for acoustic modeling in statistical parametric synthesiz-

ers. The factorization is conducted assuming that both vocal tract

resonance and glottal flow effect are fully represented by the com-

plex cepstrum. We investigated four different forms to represent

the complex cepstrum in the acoustic models and compared their

performances in terms of objective measures between reconstructed

and natural waveforms and final quality of the synthesized speech.

According to experimental results, the all-pass/minimum-phase and

real cepstrum/phase cepstrum decompositions are the best ones in

terms of preserving the complex cepstrum information after the pa-

rameter generation process.

Index Terms— Speech synthesis, statistical parametric speech

synthesis, speech production models, complex cepstrum

1. INTRODUCTION

Homomorphic deconvolution is a method of processing signals that

are assumed to be convolved [1]. In case of speech, cepstral analysis

has been largely used to separate the effects of the vocal tract from

the glottal flow [2, 3]. Different from the usual real cepstrum of

speech, the complex cepstrum is a full representation of the speech

signal because it contains not only the amplitude but also its phase

spectrum [1, 2, 4]. However, there are two main drawbacks to the

use of the complex cepstrum: (1) the speech signal usually must

be segmented at the glottal closure instants (GCI); (2) because

the phase response usually corresponds the principal value of the

phase, a phase unwrapping mechanism must be conducted. In the

last decades many authors have proposed methods to overcome or

alleviate these issues, e.g. [5, 6, 7], and [8, 9].

We have applied the complex cepstrum to statistical paramet-

ric speech synthesis and obtained good results in terms of synthe-

sized speech quality [10, 11]. However, despite the good perfor-

mance achieved, analysis issues related to the speech segmentation

and phase unwrapping still existed. To alleviate these problems,

and also as a way to derive frame-based complex cepstrum as re-

quired by statistical models, we proposed an iterative method of

complex cepstrum analysis based on the minimum mean squared

error (MSE) [12]. The proposed approach showed to be robust to

inaccurate glottal closure instant (GCI) indications. Furthermore, no

phase unwrapping mechanism was necessary to take place during the

optimization procedure. This technique resulted in good synthesized

speech quality, specially for data with high F0 fluctuations, such as

expressive speech. Later, more improvements in terms of speech

quality and robustness to expressive data were achieved by doing

complex cepstrum optimization on a warped scale, and by adjust-

ing the pulse optimization procedure so as to match the generation

process of statistical parametric synthesizers [13].

In this paper we investigate on possible ways to model the com-

plex cepstrum information in the hidden semi-Markov models so as

to result in better speech representation at the synthesis stage. We

test four different ways to model the complex cepstrum, with three

of them based on factorizations. The decompositions were consid-

ered according to speech signal components, such as amplitude and

phase, and also based on factors that are connected to the way in

which the speech signal is produced, such as vocal tract and glottal

flow parameters.

The organization of this paper is as follows. Section 2 outlines

speech modeling using the complex cepstrum; Section 3 presents the

considered factorizations and respective connections with the speech

signal, and speech production mechanism; Section 4 shows some

experiments; and Section 5 presents the conclusions.

2. COMPLEX CEPSTRUM-BASED SPEECH

REPRESENTATION

Assuming that s(n) is a two-pitch segment of speech, selected

through an appropriate window with center at the GCI, the warped

complex cepstrum of s(n) can be given by [13]
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to warp the angular frequency ω, with α being a factor that indicates

the degree of warping [14]. The cepstral coefficients, ĥ(n), usually

encapsulate the effects of the vocal tract resonance and glottal flow.

At synthesis time, ĥ(n) can be converted to an impulse response,

h(n), through the following operations

H (eω) = exp
C

X

n=−C

ĥ(n)e−βα(ω)n, (3)

h(n) =
1

2π

Z π

−π

H (eω) eωndω, (4)

for −M/2 ≤ n ≤ M/2, where M is the impulse response order.

To reconstruct the speech signal, synthesis can be done by perform-

ing overlap-and-add of the impulse responses, h(n), at the corre-

sponding analysis instants. Fig. 1 shows examples of natural and

reconstructed waveforms. Note that the similarity between the two

signals indicates that the phase information of the speech signal is

being represented by ĥ(n).

For simplicity, βα (ω) and β−1
α (ω) will be dropped henceforth.
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Fig. 1. Example of natural (top) and reconstructed (bottom) voiced

speech segments. The reconstructed segment was obtained through

overlap-and-add of the impulse responses derived from the complex

cepstrum, h(n), at the respective analysis instants.
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Fig. 2. All-pass (top) and minimum-phase (bottom) components of

the natural segment shown in Fig. 1. The waveforms were obtained

through the overlap-and-add of ha(n) and hm(n) at the correspond-

ing analysis instants.

3. COMPLEX CEPSTRUM-BASED SPEECH

FACTORIZATION

For statistical parametric synthesis it is interesting to factorize the

complex cepstrum for acoustic modeling due to two main reasons.

The first one is that depending on the size of the database, high-

dimensional features like ĥ(n) can be poorly estimated through

high-dimensional Gaussian distributions [15]. The second reason is

that as mentioned in Section 2, the complex cepstrum is assumed

to be a full representation of the speech signal and consequently

includes both effects of the vocal tract and glottal excitation. Be-

cause the glottal flow excitation and the vocal tract resonance play

different roles in the speech production mechanism, it is natural

to consider that they should have separate decision trees. In the

following we present intuitive ways in which the complex cepstrum

can be decomposed for statistical modeling.

3.1. All-pass/minimum-phase decomposition

Any stable system with impulse response h(n) can be represented as

a convolution of a minimum-phase, hm(n), and an all-pass, ha(n),

impulse responses [1], i.e. h(n) = hm(n) ∗ ha(n). In the cepstral

domain this convolution becomes a summation: ĥ(n) = ĥm(n) +

ĥa(n). Assuming that the complex cepstrum of an equivalent se-

quence with the same amplitude spectrum and minimum phase re-

sponse is given by [1]

ĥm(n) =

8

>

<

>

:

0, n < 0,

ĥ(0), n = 0,

ĥ(n) + ĥ(−n), 1 ≤ n ≤ C,

(5)
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Fig. 3. Anti-causal (top) and causal (bottom) components of the

natural speech segment shown in Fig. 1. The waveforms were ob-

tained through the overlap-and-add of hac(n) and hca(n) at the cor-

responding analysis instants.

then the so-defined all pass cepstrum becomes

ĥa(n) = ĥ(n) − ĥm(n) =

8

>

<

>

:

ĥ(n), n < 0,

0, n = 0,

−ĥ(−n), n > 0,

(6)

where it can be noticed that ĥa(n) contains solely samples of the

anti-causal cepstrum, i.e. ĥ(n), n < 0. Therefore, the all-pass im-

pulse response ha(n) represents the additional phase information

that when added to the minimum-phase, results in the phase of the

speech signal. This decomposition has advantages in terms of com-

patibility with systems based on the minimum-phase synthesis filter.

Fig. 2 shows the all-pass and minimum-phase components of the

segment of speech shown in the top part of Fig. 1. The waveforms

were produced through the overlap-and-add of the impulse responses

ha(n) and hm(n) at the respective analysis instants.

3.2. Anti-causal/causal decomposition

Another way to factorize the complex cepstrum is to simply split it

into its anti-causal and causal components, i.e.

ĥac(n) =

(

ĥ(n), −C ≤ n < 0,

0, 0 ≤ n ≤ C,
(7)

ĥca(n) =

(

0, −C ≤ n < 0,

ĥ(n), 0 ≤ n ≤ C.
(8)

In this case, studies have shown (e.g. [8]) that the impulse response

derived from the anti-causal cepstrum, ĥac(n), is related to the glot-

tal flow. Therefore, assuming that the complex cepstrum fully rep-

resents the speech signal, the causal cepstrum ĥca(n) is then related

mostly to the vocal tract information. Fig. 3 shows the anti-causal

and causal components of the speech segment shown in Fig. 1. The

waveforms were created through the overlap-and-add of hac(n) and

hca(n) at the analysis instants. It can be noticed that hac(n) pro-

duces a signal that resembles a sequence of glottal pulses.

This form of decomposition has advantages in terms of explic-

itly separating the effects of the glottal flow from the vocal tract.

However, as investigated in [8], the separation of the anti-causal

and causal speech components using the complex cepstrum is not

a trivial task. Although the waveforms shown in Fig. 3 indicate that

the separation has more or less succeeded, in many cases the com-

ponents produced by the inaccurate anti-causal and causal cepstra

do not make much sense in terms of speech production mechanism.

This decomposition is highly sensitive to the estimation of the com-

plex cepstrum.
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Table 1. Amplitude and phase responses of the components, in terms of ĥ(n), assuming the decompositions shown in Section 3.
Minimum phase All pass

|Hm (eω)| = exp
PC

n=0 ĥ(n) cos ωn θm (ω) = −
PC

n=1 ĥ(n) sin ωn |Ha (eω)| = 1,∀ω θa (ω) = 2
PC

n=1 ĥ(−n) sin ωn

· exp
PC

n=1 ĥ(−n) cos ωn −
PC

n=1 ĥ(−n) sin ωn

Causal Anti-causal

|Hca (eω)| = exp
PC

n=0 ĥ(n) cos ωn θca (ω) = −
PC

n=1 ĥ(n) sin ωn |Hac (eω)| = θac (ω) =
PC

n=1 ĥ(−n) sin ωn

exp
PC

n=1 ĥ(−n) cos ωn

Real cepstrum Phase cepstrum

|Hr (eω)| = exp
PC

n=0 ĥ(n) cos ωn θr (ω) = 0, ∀ω |Hp (eω)| = 1,∀ω θp (ω) = −
PC

n=1 ĥ(n) sin ωn

· exp
PC

n=1 ĥ(−n) cos ωn +
PC

n=1 ĥ(−n) sin ωn
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Fig. 4. Only-phase (top) and zero-phase components of the natural

speech segment shown in Fig. 1. The waveforms were constructed

through the overlap-and-add of hr(n) and hr(n) at the correspond-

ing analysis instants.

3.3. Phase cepstrum/real cepstrum decomposition

The complex cepstrum can also be decomposed into the real cep-

strum, which carries solely information on the amplitude spectrum

of speech, and the so-defined phase cepstrum, which carries infor-

mation solely on the phase spectrum of speech. The real cepstrum

corresponds to the even component of the complex cepstrum [1]

ĥr(n) =
ĥ(n) + ĥ(−n)

2
, −C ≤ n ≤ C, (9)

and consequently the phase cepstrum becomes

ĥp(n) = ĥ(n) − ĥr(n) =
ĥ(n) − ĥ(−n)

2
, (10)

for −C ≤ n ≤ C. It can be demonstrated that the real and phase

cepstrum can also be derived by taking the inverse Fourier trans-

forms of the log magnitude and phase spectra, respectively. Fig. 4

shows two waveforms. The one at the top contains the phase in-

formation of the speech segment of Fig. 1, while the waveform at

the bottom is its zero-phase version. The waveforms were produced

through the overlap-and-add of hr(n) and hp(n) at the analysis in-

stants. Note the similarity between Figures 2 and 4. The only differ-

ence between the two forms of decomposition regards the minimum-

phase response.

3.4. Summary of the decompositions

Table 1 shows the amplitude and phase responses of each compo-

nent of the decompositions considered in Section 3. Assuming that

the anti-causal cepstrum represents the glottal flow information, and

the causal cepstrum the vocal tract1, the following observations can

be made: (1) the real cepstrum merges the amplitude responses of

the vocal tract and glottal flow; (2) the minimum-phase cepstrum

1Note that in this work we are disregarding that the lip radiation effect.

Table 2. Summary of the decompositions considered in terms of

what each component represents.

Factorization Comp. Information embedded

All pass MP Vocal tract amplitude response

(AP) / Glottal flow amplitude response

Minimum phase Vocal tract phase response

(MP) Glottal flow phase to some extent

AP Glottal flow phase response

Anti-causal CA Vocal tract amplitude response

(AC) / Vocal tract phase response

Causal AC Glottal flow amplitude response

(CA) Glottal flow phase response

Phase cepstrum RC Vocal tract amplitude response

(PC) / Glottal flow amplitude response

Real cepstrum PC Vocal tract phase response

(RC) Glottal flow phase response

corresponds the vocal tract impulse response convolved with a time

flipped, causal version of the glottal flow impulse response. Table 2

summarizes the decompositions, showing which sort of information

each component embeds in terms of speech signal properties and

speech production mechanism.

4. EXPERIMENT

Two databases were used to check which factorizations presented in

Section 3 result in better performance in terms of speech synthesis

quality under the statistical parametric method. The first database

consisted of 3180 utterances from a female English speaker sampled

at 16 kHz. The second database corresponded to 2551 utterances

from a male English speaker, also sampled at 16 kHz.

The databases were processed by the MSE-based complex cep-

strum analysis method presented in [13], with cepstral order C =
39, warping factor α = 0.42, impulse response order M = 1024,

and the number of sampled frequency for the warped spectrum, was

set to L + 1 = 513. A total of five iterations per utterance was

conducted, where each iteration included a GCI marking optimiza-

tion and a complex cepstrum re-estimation step. F0 and initial GCI

markings were extracted using the Entropic Signal Processing Tools.

The complex cepstra were decomposed in three different ways,

according to the factorizations described in Section 3. Four different

systems were trained. The systems differed in the way the complex

cepstrum was modeled in the statistical parametric synthesis frame-

work. Table 3 shows how stream organization and weight, γ, were

adjusted. The complex cepstrum streams were modeled using con-

tinuous Gaussian probabilities while the ln F0 streams were mod-

eled using multi-space Gaussian distributions [16]. Note that stream

weight γ = 1 was set to all the streams in System 3, since in our un-
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Table 3. Trained systems. The feature vectors are ĥ
⊤

m =

[ĥm(0) · · · ĥm(C)], ĥ
⊤

a = [ĥa(1) · · · ĥa(C)], ĥ
⊤

ca =

[ĥca(0) · · · ĥca(C)], ĥ
⊤

ac = [ĥac(−1) · · · ĥac(−C)], ĥ
⊤

r =

[ĥr(0) · · · ĥr(C)], ĥ
⊤

p = [ĥp(1) · · · ĥp(C)], and ĥ
⊤ =

[ĥ(−C) · · · ĥ(C)], and γ is the stream weight. Other streams con-

sidered were {o2, o3, o4} =
˘

ln F0, ∆ ln F0, ∆
2 ln F0

¯

.

System Factorization Stream organization γ

1 All-pass/ o
⊤

1 =
ˆ

ĥ
⊤

m ∆ĥ
⊤

m ∆2
ĥ

⊤

m

˜

1

min. phase o5 =
ˆ

h
⊤

a ∆h
⊤

a ∆2
h

⊤

a

˜

0

2 Anti-causal/ o
⊤

1 =
ˆ

ĥ
⊤

ca ∆ĥ
⊤

ca ∆2
ĥ

⊤

ca

˜

1

causal o
⊤

5 =
ˆ

ĥ
⊤

ac ∆ĥ
⊤

ac ∆2
ĥ

⊤

ac

˜

0

3 Phase cep./ o
⊤

1 =
ˆ

ĥ
⊤

r ∆ĥ
⊤

r ∆2
ĥ

⊤

r

˜

1

real cep. o
⊤

5 =
ˆ

ĥ
⊤

p ∆ĥ
⊤

p ∆2
ĥ

⊤

p

˜

1

4 None o
⊤

1 =
ˆ

ĥ
⊤ ∆ĥ

⊤ ∆2
ĥ

⊤
˜

1

White noise

w(n)

t(n)

Pulse train

lnF0

Voiced
F0 > 0

Unvoiced
F0 = 0

e(n)
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Non-causal
impulse response
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Complex cepstrum

H(z)
Speech

s(n)

Fig. 5. Synthesis time. ln F0 is used to generate a simple pulse

train/white noise excitation signal while the non-causal impulse re-

sponse of the synthesis filter is derived from the complex cepstrum.

derstanding the full phase information should also have an influence

on the state alignment. Decision tree-clustering for the systems listed

in Table 3 was performed in three steps. In the first two steps, the

minimum description length (MDL) criterion was used [17]. Each

step consisted of untying the models and decision tree-based context

clustering, followed by 5 iterations of embedded re-estimation. In

the last step, cross validation with hierarchical priors as presented

in [18] was used to derive the final decision trees. This procedure

was conducted to avoid over smoothing problems due to the empiri-

cal adjustment of the MDL factor for tree growth.

At synthesis time, in systems 1,2 and 3, the generated compo-

nents of the complex cepstrum were combined to result in frame-

based complex cepstrum sequences. In System 4, frame-based com-

plex cepstra was directly obtained from the parameter generation

stage. Once sequences of complex cepstrum and ln F0 were avail-

able, speech synthesis was performed as shown in Fig. 5. The gen-

erated the complex cepstrum was used to derive the synthesis filter

non-causal impulse response according to (3) and (4).

4.1. Objective evaluation

A set of 50 sentences from each speaker used in the training were

used for an objective evaluation. Each of the selected sentences were

re-synthesized using natural ln F0, GCI markings obtained in the last

iteration of the MSE-based complex cepstrum analysis, phone du-

rations taken from the training labels, and generated complex cep-

strum. The idea was to verify the impact of the acoustic modeling

using the different decompositions. The distance between natural

and reconstructed speech was measured in terms of segmented sig-

nal to noise ratio of the voiced regions (SNRseg-v). Table 4 shows

the results of this test for both male and female speakers. The sen-

Table 4. Segmented signal-to-noise ratio for the voiced regions

(SNRseg-v) in dB, between natural and reconstructed speech.

Natural Cepstrum generated from system

cepstrum 1 2 3 4

Female 17.25 4.12 3.59 4.12 4.20

Male 13.42 0.18 0.20 0.06 0.32

System 1 System 2 System 3 System 4 No pref.
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Fig. 6. Results of the subjective test in terms of average listener’s

preference, with the corresponding 95% confidence intervals.

tences were randomly selected from the training material.

It can be noticed that the degradation caused by the acoustic

modeling is evident, with losses in average of 13 dB. From Table 4

it can also be seen that systems 1, 2 and 4 are similar but superior in

quality to System 3. This shows that the instability issues related to

the anti-causal/causal decomposition were not smoothed out.

4.2. Subjective test

A subjective listening preference test was conducted to compare the

four systems in terms of quality. In total, 20 open sentences were

used. Thirteen subjects, including eight speech synthesis specialists,

took part in the test. The subjects were instructed to listen carefully

to the samples as many time as possible in order to choose the one

with the best quality. Each subject listened to 20 comparison pairs

that were randomly selected from the 120 possible ones. Table 6

shows the results of the test in terms of average preference. Ac-

cording to these results, the minimum-phase/all-pass and real cep-

strum/phase cepstrum decompositions are the ones that mostly pre-

serves complex cepstrum information.

One can note that although the full complex cepstrum modeling

performed as one of the best in the objective evaluation with closed

sentences, they performed poorly in the listening test. Because the

sentences used in the listening test were not part of the training

set, this indicates that the high-dimensional complex cepstrum vec-

tor is not being properly represented by a single Gaussian distri-

bution. By observing the results of System 2 it can be concluded

that the unsuccessful decomposition instances between causal and

anti-causal components directly affects that quality of the synthetic

speech. Finally, given these conditions, two good choices to model

complex cepstrum information for speech synthesis are through the

all-pass/minimum-phase and real/phase decompositions.

5. CONCLUSIONS

We investigated different forms to model complex cepstrum infor-

mation for statistical parametric speech synthesis. In order to do

that, different ways to factorize the complex cepstrum in terms of

relationship with the speech production mechanism, and in terms of

phase and amplitude characteristics, were taken into account. Ac-

cording to the results, among the tested modeling forms, the ones

that used all-pass/minimum-phase and the real cepstrum/phase cep-

strum decompositions were the ones that mostly preserved the com-

plex cepstrum information, and consequently speech quality.
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