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ABSTRACT

Deep Neural Network (DNN), which can model a long-span,
intricate transform compactly with a deep-layered structure, has
recently been investigated for parametric TTS synthesis with a
fairly large corpus (33,000 utterances) [6]. In this paper, we
examine DNN TTS synthesis with a moderate size corpus of 5
hours, which is more commonly used for parametric TTS training.
DNN is used to map input text features into output acoustic
features (LSP, FO and V/U). Experimental results show that DNN
can outperform the conventional HMM, which is trained in ML
first and then refined by MGE. Both objective and subjective
measures indicate that DNN can synthesize speech better than
HMM-based baseline. The improvement is mainly on the prosody,
i.e., the RMSE of natural and generated FO trajectories by DNN is
improved by 2 Hz. This benefit is likely from the key
characteristics of DNN, which can exploit feature correlations, e.g.,
between FO and spectrum, without using a more restricted, e.g.
diagonal Gaussian probability family. Our experimental results
also show: the layer-wise BP pre-training can drive weights to a
better starting point than random initialization and result in a more
effective DNN; state boundary info is important for training DNN
to yield better synthesized speech; and a hyperbolic tangent
activation function in DNN hidden layers yields faster convergence
than a sigmoidal one.

Index Terms— Speech Synthesis, HUM, DNN, TTS
1. INTRODUCTION

In recent years, a new machine learning algorithm named DNN has
improved speech recognition significantly [1-3]. In the DNN-
HMM approach, acoustic features along with contextual-dependent
phone sequence are firstly modeled by conventional GMM-HMMs,
then the aligned pairs of decision-tree based HMM tied states
(“senones”) and corresponding acoustic feature vectors (GMM-
HMM is used for forced alignment) are modeled by DNN, which
has become the state-of-art acoustic modeling in speech
recognition. Comparing with the conventional HMM-based
approach, DNN based approach can: model long-span (e.g., 11
frames), high dimensional and strongly correlated features as its
input feature; find a highly non-linear mapping between input and
output features with a deep-layered, hierarchical structure; train
model parameters discriminatively through back-propagation with
the gradient of a cost function.

Over the past decade, corpus-driven speech synthesis system
trained as HMM [4, 5] has gained its popularity steadily in the TTS
community. A parametric HMM is effective to model the evolution
of speech signals as a stochastic sequence of acoustic feature
vectors. Many techniques have been developed for HMM-based
speech recognition, e.g. context-dependent modeling, state-tying
based on decision tree clustering, and speaker adaptation. They
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have been applied equally well to HMM-based TTS for speech
parameter trajectory generation. The trajectory thus generated with
trained HMMs is fairly smooth and very rarely results in
concatenation glitches which occur occasionally in unit-selection
synthesis. However, overly-smoothed parameter trajectories due to
statistical average in HMM training still tend to make synthesized
speech sound not as lively as desired.

Contrary to speech recognition, speech synthesis can be
viewed as an inverse or a production process. Motivated by the
success of DNN in speech recognition, a few DNN research
attempts have been tried in order to improve the performance of
vocoder-based speech synthesis. Zen, et al. [6] comprehensively
listed the limitations of the conventional HMM-based approach,
e.g. decision-tree based contextual state clustering, and proposed to
use DNN to overcome these limitations for speech synthesis. It
shows DNN based approach, which models the relationship
between input texts and their corresponding acoustic features, can
outperform the HMM-based approach with a similar number of
parameters. Phone, letter and Vector Space Model (VSM) based
binary or continuous features used as input features, and frame or
state used as timescale for output predictions are tested in DNN
based speech synthesis [7]. Deep Belief Network (DBN) with
stacked, Restricted Boltzmann Machines (RBMs), which can
model the structure in the input data as generative “pre-training”
and find a region of the weight-space to reduce over-fitting for the
discriminative “fine-tuning” phase in speech recognition [3], is
also employed to model joint distribution of linguistic and acoustic
features for speech synthesis [8]. In addition, RBM is directly used
to represent the distribution of the spectral envelopes at each HMM
state [9], where the estimated mode of RBM is better than the
mean of GMM and results in a better voice quality in speech
synthesis.

In this paper, we further investigate various training aspects of
DNN as a generation model for TTS synthesis. Instead of a large
database of 33,000 utterances used in [6], a moderate size, S-hour
corpus (female speaker) is used. This moderate or even smaller
corpus size is commonly used in training parametric TTS. Also,
parametric TTS trained with this size corpus, has been shown to
outperform unit-selection based TTS in synthesis quality.

2. DNN FOR TTS SYNTHESIS
2.1. DNN for Regression Problem

A DNN is a feed-forward, artificial neural network with multiple
hidden layers between its input and output. For each hidden unit j,
a nonlinear activation function f{*), is used to map all inputs from
the lower layer, x;, to a scalar state, y;, which is then fed to the
upper layer,

yj = f(x;) (D
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where
Xj = by + X yiwij @)

and b; is the bias of unit j; i is the unit index of lower layer; wj is
the weight of the connection between unit j and unit 7 in the layer
below. Generally we choose the activation function f{*) to be a
sigmoid function:

) = —= 3)

1+e )

where the input-output mapping is defined by a logistic regression,
or a hyperbolic tangent (or tanh) function:

- e
fO) =z 4)
which is a rescaled version of the sigmoid, and its output range is
[-1, 1] instead of [0, 1].

All weights and biases are generally initialized in pre-training
[10], and then trained by optimizing a cost function which
measures the discrepancy between target vectors and the predicted
output with a Back-Propagation (BP) procedure [11]. Given a fixed

training set {(x", y1), ..., x™, y™)} with T training examples,
the cost function to be minimized is defined by
1 2
€ =55 Xt IFx®) =y @ )

To prevent over-fitting, a regularization term (also called a weight
decay term [12]) is added into Eq. 5. Also, learning can be simply
terminated when the performance on a held-out validation set starts
to deteriorate [13]. The DNN is trained by using batch gradient
descent. It is optimized by a “mini-batch” based stochastic gradient
descent algorithm,
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where ¢ is a preset learning rate.

The cost function in (5) is often used for classification and
regression problems. TTS is a regression problem, the outputs are
first scaled to ensure that they lie in the range of [0, 1] or [-1, 1] if
a tanh activation is used. Nonlinear activation function can allow
the neural networks to compute nontrivial problems by using only
a small number of nodes. However, for neural network based
regression, commonly a nonlinear activation function is adopted
for hidden layers while linear activation function is employed only
at the final output layer.

2.2. DNN Pre-training

Pre-training is crucial in training deep structured models for speech
recognition tasks [14, 15] and it can initialize the weights to a
better starting point than random initialization such that BP can
have a rapid learning. It is shown that DNNs with deeper layers
can outperform traditional shallow networks [1, 17].

DNNs can be pre-trained as a Deep Belief Network (DBN) [3]
or “layer-wise BP” [16]. In DBN pre-training, the network is
trained in a layer-by-layer manner with stacked, Restricted
Boltzmann Machines (RBMs), where each successive pair of
layers is treated as an RMB. The weights that connect each pair of
layers are trained in an unsupervised fashion by the criterion of
contrastive divergence [10]. Alternatively, the network can be
initialized using “layer-wise BP” pre-training [16]. This procedure
starts by training a Multi-Layered Perceptron (MLP) with one
hidden layer using back-propagation. The weights of the first

hidden layer are then fixed, and a new randomly initialized hidden
layer is added into the network and output layer is introduced to
replace the output layer of the initial network. The deeper network
is trained again using back-propagation. This procedure is repeated
until a desired number of hidden layers is reached.

The cost function in Eq.5 is to minimize the average sum-of-
squared errors between target and generated (predicted) vectors. In
DBN pre-training, although DNN weights are pre-trained in a
generative manner, an approximate maximum likelihood criterion
of contrastive divergence is still used to learn the model parameters.
While in layer-wise BP, the hidden layers are added to the neural
networks one by one to full convergence, it can remedy the
modeling inaccuracies in DBN pre-training.

2.3. DNN vs. HMM for TTS Synthesis

Fig. 1 shows the DNN-based TTS synthesis next to the
conventional HMM-based TTS synthesis.
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Fig. 1. DNN vs. HMM for TTS synthesis

In HMM-based TTS, the spectral envelope, fundamental
frequency, and duration are modeled simultaneously by the
corresponding HMMs. Rich contexts are used to capture co-
articulation effects in HMM modeling. However, in practice,
limited by insufficient training data, we usually have to tie models
of long contexts into generalized ones to predict unseen contexts in
testing. State tying via a clustered decision tree is commonly used.
In synthesis, for a given text sequence, text is first converted into a
sequence of contextual labels through the text analysis module.
The corresponding contextual label is then used to access the
decision tree to get the contextual HMM state sequence. The
corresponding means and covariances of HMM states are fed into
the parameter generation module to generate smooth speech
parameter trajectories, which are synthesized in a maximum
probability sense along with the dynamic infomation. Finally,
speech waveform is synthesized from the generated spectral and
excitation parameters via a vocoder.

In DNN-based TTS, rich contexts are also used as input
features, which contain the binary features for categorical contexts,
e.g. phone labels, POS labels of the current word, and TOBI labels,
and numerical features for the numerical contexts, e.g., the number
of words in the phrase or the position of current frame in the
current phone. The output features are acoustic features like
spectral envelope and fundamental frequency. Input features and
output features are time-aligned frame-by-frame by well-trained
HMM models. The weights of DNN are trained by using pairs of
input and output features extracted from training data to minimize
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the errors between the mapped output from a given input and the
target output. In synthesis, the input text is converted first into
input feature vector through the text analysis, then input feature
vectors are mapped to output vectors by a trained DNN using
forward propagation. By setting the predicted output features from
the DNN as mean vectors and pre-computed (global) variances of
output features from all training data, the speech feature generation
module can generate smooth trajectories of speech parameter
features which satisfy the statistics of static and dynamic features.
Finally, speech waveform is synthesized with the generated speech
parameters.

We conjecture that the strong learning capability of DNN
should benefit TTS speech synthesis. DNN simulates human
speech production by a layered hierarchical structure to transform
linguistic text information into final speech output. Deep-layered
architectures can represent long-span, highly-complex function
(transformation) compactly [18]. The functions can be compactly
represented with a & level deep architecture which can outperform
a shallow architecture of many more weights. A decision tree,
which is generally used in HMM-based TTS for clustering the
similar context-dependent state into tied states, is such a shallow
architecture. HMM also has a conditional independence
assumption that all observations are dependent only upon the states
that generate them, but independent of their neighboring
observations. HMM states and decision tree decompose the
training data into small partitions and the model parameters are
updated with the corresponding data in the partitions independently,
while the weights of DNN are updated by looping through all
training data to utilize full training efficiency. Based upon the
above points, DNN-based TTS should have lower model
complexity than that of HMM TTS. Additionally, DNN training is
not constrained by the limitations of the intrinsic greedy search in a
decision tree.

3. EXPERIMENTS AND RESULTS
3.1. Experimental Setup

A phonetically and prosodically rich corpus in American English is
used in our experiments. The English corpus consists of 5,000
training utterances (around 5 hours) and 200 extra utterances are
used for testing. The corpus is recorded by a female speaker.
Speech signals are sampled at 16 kHz, windowed by a 25-ms
window shifted every 5-ms. The LPC of 40th order is transformed
into static LSPs and their dynamic counterparts. The phonetic and
prosodic contexts include quin-phone, the position of phone,

syllable and word in phrase and sentence, the length of word and
phrase, stress of syllable, TOBI and POS of word.

In the baseline HMM-based TTS, five-state, left-to-right
HMM phone models, where each state is modeled by a single
Gaussian, diagonal covariance output distribution, are adopted.
The phonetic and prosodic contexts are used as a question set in
growing decision trees. Minimum description length (MDL)
criterion [22] for balancing model complexity and training data
size is used as a stopping criterion for state clustering in decision
tree growing. HMM parameters are firstly trained in the Maximum
Likelihood (ML) sense and then refined by the minimum
generation error (MGE) training. It adjusts HMM parameters
trained by the conventional EM algorithm to minimize the
generation error between synthesized and original parameter
trajectories of the training data [19].

In the DNN-based TTS, the input feature vector contains 355
dimensions, where 319 are binary features for categorical linguistic
contexts and the rest are numerical linguistic contexts. The output
feature vector contains voiced/unvoiced flag, log F0, LSP, gain,
their ~ dynamic  counterparts, totally 127  dimensions.
Voiced/unvoiced flag is a binary feature that indicates whether the
current frame is voiced or not. An exponential decay function [20]
is used to interpolate FO in unvoiced speech regions. 80% of
silence frames are removed from the training data to reduce the
computational cost. Removing silence frame in DNN training was
found useful for avoiding DNN overlearning silence label in
speech recognition task. Both input and output features of training
data are normalized to zero mean and unity variance. The weights
are trained by back-propagation procedure with a “mini-batch”
based stochastic gradient ascent algorithm.

For the testing utterances, both HMM and DNN outputs are
firstly fed into a parameter generation module to generate smooth
feature parameters with dynamic feature constraints [4], then
formant sharpening based on LSP frequencies [21] is used to
reduce the over-smoothing problem of statistic parametric
modeling and the resultant degraded synthesized speech quality,
finally the waveforms are synthesized by a LPC synthesizer by
using generated speech parameters.

3.2. Evaluation Results and Analysis
Objective and subjective measures are used to evaluate the

performance of two TTS systems on testing data. Synthesis quality
is measured objectively in terms of distortions between natural
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Fig. 2. (a) Sigmoid vs. Tanh for the activation function of hidden layers in DNN training; (b) No pre-training vs. pre-training (DBN or
layer-wise BP) in DNN training; (¢) LSD of different number of hidden layers.
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test utterances of the original speaker and the synthesized speech
frame-synchronously where oracle state durations (obtained by
forced alignment) of natural speech are used. The objective
measures are FO distortion in the root mean squared error (RMSE),
voiced/unvoiced (V/U) swapping errors and normalized log
spectrum distance (LSD) in dB. The subjective measure is an AB
preference test between speech sentence pairs synthesized by
HMM-based TTS and DNN-based TTS.

The sigmoid and hyperbolic tangent activation functions are
used for the hidden layers of DNN, while the linear activation
function is employed for the output layer. The average LSDs of
testing utterances by using sigmoid and tanh activation functions in
a 4-layer DNN (with 3 hidden layers) are shown along the number
of epochs in Fig.2. (a), where the performances of the two
activation functions are almost the same but tanh converges much
faster than sigmoid. Fig.2. (b) shows the average LSDs of testing
utterances of a 4-layer DNN with/without pre-training. The
resultant LSDs of DNN with DBN pre-training is worse than that
of without pre-training while that of DNN with layer-wise BP pre-
training is the other way around. We think it is due to that the
criterion of layer-wise BP pre-training is consistent with that of
DNN training. The average LSDs of testing utterances by using
different number of hidden layers (from 1 to 6) are illustrated in
Fig.2. (c), where the performances of 3~6 hidden layers are close
although the deepest DNN is the best on LSDs. The other two
objective measures, V/U error rate and the RMSE of FO, show
similar trend as LSDs, hence not shown here due to limited space.

The results of objective measures of different structures and
different MDL factors in DNN and HMM trainings are shown in
Tables 1 and 2, respectively. For DNN training, 3 or 6 hidden
layers with 512 or 1024 nodes for each layers yield very similar
performances in all three objective measures. For HMM training,
larger MDL factors yield worse objective results. By comparing
the results of DNN with those of HMM, DNN can achieve a better
performance on FO, i.e., the RMSE of natural and generated FO
trajectories by DNN is improved by 2 Hz, with slightly over 1/4 of
the system sixe. The LSD of natural and generated spectra by DNN
is about the same as HMM. The MGE training, a more consistent
criterion than ML between training and synthesis, is used in HMM-
based TTS system and generally is more effective in producing
better spectral fidelity than FO.

Table 1. The results of objective measures of different structures
(the number of system parameters) in DNN training

randomly selected from the testing set and synthesized by the best
baseline HMM system (MDL=1) and DNN systems (512*3 and
1024%*3), are evaluated in two AB preference tests participated by 6
subjects. There are three preference choices: 1) the former is better;
2) the latter is better; 3) no preference or neutral (The difference
between the paired sentences cannot be perceived or can be
perceived but difficult to judge which one is better). The
preference scores are shown in Fig. 3. It shows the speech
synthesized by the DNN system with 1024*3 structure is preferred
than the best HMM system. Its preference score (67%) is higher
than the baseline system (23%). While the perception difference
between the best HMM system and DNN system (512*3) is not
significant, i.e. the preference scores are 46% vs. 44%. (Some
samples of synthesized utterances are given on the web link:
http://research.microsoft.com/en-us/projects/dnntts/default.aspx )

46% 10% 4%
HMM (MDL=1) Neutral DNN (512*3)
23% 10% 67%
HMM (MDL=1) Neutral DNN (1024*3)

Fig. 3. The preference scores of the best baseline HMM system
and DNN systems with different system complexities.

It is difficult to use DNN for sequence modeling while HMM is
effective to model the evolution of speech signals as a stochastic
sequence of acoustic feature vectors. To use DNN for modeling
speech features, generally the input and output features need to be
force aligned by HMMs in advance. In our experiments of DNN
training, the input text features and output acoustic features are
aligned at state level. Each input feature vector has 5 dimensional
binary features, which indicate the current frame belonging to the
state position of current phone. The state duration of both training
and testing sentences are also given by HMM based system. We
also try to align input and output features at phone level and use
input features to indicate the coarse boundaries (by evenly dividing
a phone into five parts) in a given phone. The results of objective
measures, shown in Table 3, indicate that aligned state boundaries
are effective for generating better synthesized speech than coarse
boundaries.

Table 3. The results of objective measures of DNN (512*3) trained
by given precise state or coarse boundary

Measures LSD V/U Error | FO RMSE Measures LSD V/U Error | FO RMSE
DNN Structurg (dB) rate (Hz) Boundary (dB) rate (Hz)
512 *3 (0.77 M) 3.76 5.9% 15.8 Precise 3.76 5.9% 15.8
512 *6 (1. 55M) 3.73 5.8% 15.8 Coarse 3.92 6.7% 16.2
1024*3 (2.59 M) 3.73 5.9% 15.9

Table 2. The results of objective measures of different MDL
factors (the number of system parameters) used by decision-tree

based clustering in HMM training

Measures LSD V/U Error | FO RMSE
MDL Factor (dB) rate (Hz)
1 (289M) 3.74 5.8% 17.7
1.6 (1.52M) 3.85 6.1% 18.1
3 (0.85M) 391 6.2% 18.4

The performance of DNN and HMM systems are further
evaluated by perceptual subjective tests. 30 utterances, which are

4. CONCLUSIONS

DNN training is examined in this study for parametric TTS
synthesis. The results show that DNN performs better than HMM-
based baseline in TTS, very likely due to the distinctive advantages
of DNN, such as DNN is efficient and effective in representing
high dimensional and correlated features, and modeling highly
complex mapping function in a compact manner. In future work,
we will refine the training criterion of DNN by incorporating MGE
into a sequence training procedure at the sentence level in order to
exploit the correlations of static and dynamic features and carry out
a sentence level, global optimization.
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