
SPECTRAL MODELING USING NEURAL AUTOREGRESSIVE DISTRIBUTION 

ESTIMATORS FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS 

 

Xiang Yin, Zhen-Hua Ling, Li-Rong Dai 
 

National Engineering laboratory for Speech and Language Information Processing, 

University of Science and Technology of China, Hefei, P.R.China 
byx1030@mail.ustc.edu.cn, zhling@ustc.edu.cn, lrdai@ustc.edu.cn  

 
ABSTRACT 

 

This paper describes a new approach which utilizes neural 

autoregressive distribution estimators (NADE) for the spectral 

modeling in statistical parametric speech synthesis. In order to 

alleviate the over-smoothing effect on the generated spectral 

structures, a restricted Boltzmann machine (RBM) modeling 

method has been proposed in our previous work, where the RBM 

is adopted to represent the joint distribution of high-dimensional 

and physically meaningful spectral envelopes. However, the RBM 

can not provide a tractable partition function even in a moderate 

size. In this paper, we introduce NADE to model the distribution 

of mel-cepstra and spectral envelopes at each HMM state 

considering its simplicity in evaluating the probability of given 

observations. At the stage of synthesis, the spectral parameters 

derived from the mode of each context-dependent NADE are used 

to replace the Gaussian mean vector in the parameter generation 

process. Experimental results show that the NADE is able to model 

the distribution of the spectral features with better accuracy than 

the RBM model. Furthermore, our proposed method improves the 

naturalness of the conventional HMM-based speech synthesis 

system using mel-cepstra significantly and outperforms the RBM-

based spectral modeling. 

 

Index Terms— Speech synthesis, hidden Markov model, 

neural autoregressive distribution estimator, restricted Boltzmann 

machine 

 

1. INTRODUCTION 

 

The hidden Markov model (HMM)-based parametric speech 

synthesis method has been proposed in 1990’s [1] and become a 

mainstream speech synthesis method in recent years. In this 

method, the spectrum, F0 and duration are modeled simultaneously 

within a unified framework of HMMs [2]. STRAIGHT [3] is a 

widely used speech vocoder which extracts a smooth spectral 

envelope at each frame. Then, mel-cepstra [4] or line spectral pairs 

[5] are calculated from the spectral envelopes for the HMM 

modeling. At the stage of synthesis, these features are predicted 

from the HMMs through the maximum likelihood parameter 

generation (MLPG) algorithm under the constraint between static 

and dynamic features [6]. Then the spectral envelopes are 

recovered from the predicted spectral parameters and are used to 

reconstruct the speech waveforms by STRAIGHT. This method 

can synthesize highly intelligible and smooth speech sounds [7]. 

However, the quality of its synthetic speech degrades due to 

the over-smoothing issue of the generated acoustic features. One 

reason is the inadequacy of the acoustic modeling. In order to 

address this problem, some methods have been proposed. An 

RBM-based spectral envelope modeling method was proposed in 

[8]. In this method, the spectral envelopes extracted by 

STRAIGHT vocoder were modeled by an RBM for each HMM 

state. At synthesis time, the estimated mode vectors of the trained 

RBMs were used to replace the Gaussian mean vectors for 

parameter generation. Additionally, dynamic features of spectral 

envelopes have also been incorporated into the RBM modeling and 

the deep belief networks (DBN) have also been adopted in [9]. 

        An RBM is a kind of bipartite undirected graphical model 

which has been applied to speech synthesis [8] and voice 

conversion [15], [16]. However, it does not provide a tractable 

partition function for computing the probability of an observation.  

Not knowing the exact value of partition function makes it hard to 

evaluate how well the distribution estimated by the RBM fits the 

observations. The NADE proposed in [10] is inspired by the RBM 

and its model structure is similar to a fully visible sigmoid belief 

network (FVSBN) [11]. It can solve the difficulty of partition 

function calculation by decomposing the joint distribution of 

observations into tractable conditional distributions. Therefore, in 

this paper, we propose to adopt NADE as the form of the state 

PDFs instead of RBM [8].  

This paper is organized as follows. Section 2 describes the 

details of our proposed method, including a brief review on the 

RBM and NADE. Section 3 gives the experimental results and 

section 4 concludes this paper. 

 

2. METHODS 

 

2.1. Restricted Boltzmann machines 

 

An RBM is a Markov random field with a two-layer architecture 

which is used to describe the cross-dimension dependency among 

a set of random variables [12]. In this model, a set of weights 

W connect the visible stochastic units 
T

1[ ,..., ]Vv vv to the 

hidden stochastic units
T

1[ ,..., ]Hh hh as shown in Fig. 1.a), 

whereV and H refer to the unit numbers of the visible and hidden 

layers. More specifically, the energy function of the Gaussian-

Bernoulli RBM is defined as 
2

1 1 1 1
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where 
T

1[ ,..., ]Va aa ,
T

1[ ,..., ]Hb bb , and { }ij V Hw W are 

model parameters. The joint distribution over the real-valued 
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Fig. 1. The graphical model representations for a) an RBM and b) 

an NADE. iv is short for ( | )i iP v x  v and the j -th dimension 

of
ih denotes ( = 1| )j iP h v . Arrows connected by a dash line 

relates to connections with shared or tied parameters. 

 
visible units and binary hidden units is defined as 

( , ) exp( ( , )) , (2)P E Z v h v h  

where Z is known as the partition function and ensures that 

( , )P v h is a valid probability density function and sums to 1. The 

marginalized probability of v is related to the free-energy ( )F v by 

( )( ) exp FP Z v
v and 

2
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Although the RBM has been shown to be a powerful model in 

representing the distribution of high-dimensional observations, 

computing its partition function becomes intractable with even just 

a moderate number of hidden variables, e.g. around 30. Therefore, 

some approximations to the gradients are necessary when 

estimating the model parameters using the contrastive divergence 

(CD) algorithm [13]. 

2.2. Neural autoregressive distribution estimator 

The neural autoregressive distribution estimator (NADE) [10] is a 

tractable model inspired by the RBM and it is derived from the 

FVSBN. This model decomposes the joint distribution of 

observations into tractable conditional distributions to solve the 

difficulty of estimating partition functions. In this paper, NADE is 

applied to model the distribution of spectral features. Therefore, 

the Gaussian-Bernoulli NADE is adopted as shown in Fig. 1.b), 

which means
Vv are real-valued and {0,1}Hh are binary. 

The distribution of each visible unit
iv is expressed as a Gaussian 

function of the vector { , }i kv k i   v , and the probability 

distribution of observation is defined by: 

1
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where U is a separate set of weights for the connections from the 

hidden units to the outputs. ,:iU denotes the i -th row of matrixU , 

:, iW indicates the columns of matrixW whose subscripts are less 

than i . 
ih is a vector of H dimensions whose elements are the 

posterior probability ( 1 | )j iP h  v . 
1( ) (1 )tt e    is the log-

istic sigmoid function. 
       The parameter derivatives of negative log-likelihood function 

log ( )C P  v  are calculated as  
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Given a training set, the NADE model parameters{ , , , }W U a b can 

be estimated using the algorithm of stochastic gradient descent 

directly without any approximations [10]. This is the superiority of 

the NADE over the RBM which needs some approximations to 

calculate the gradients in the CD algorithm [13].  

2.3. NADE for spectral modeling 

Recently, NADE has been proved to be an efficient multivariate 

binary distribution estimator and performs similarly to a large (but 

intractable) RBMs on several datasets [10]. It has also been 

applied to modeling multinomial distributions in [14]. In this paper, 

we adopt NADE as the form of the state PDFs and investigate its 

ability in modeling and generating spectral features for HMM-

based speech synthesis which relates to the work of modeling the 

continuous stochastic distribution in [8] [9]. 

During the acoustic feature extraction using the STRAIGHT 

vocoder, the spectral envelopes are saved besides the mel-cepstra. 

The conventional method using mel-cepstra and single Gaussian 

state PDFs is conducted first for context-dependent HMM training 

to obtain the model clustering decision tress and the state 

alignment results. Then, at the stage of spectral modeling using 

NADEs, two approaches are considered here. 

One is to model the mel-cepstra. NADEs are estimated for 

modeling the static features of mel-cepstra under the maximize log-

likelihood criterion at each context-dependent HMM state. At 

synthesis time, the spectral parameters derived from the mode of 

each NADE are used to replace the Gaussian mean vector in the 

trained HMMs for the process of parameter generation.  

Another is to model the spectral envelopes. This approach is 

similar to the method in [8]. NADEs are trained for modeling the 

static features of spectral envelopes at each context-dependent 

HMM state. At synthesis time, the mel-cepstra are derived from the 

estimated mode of each NADE and used to replace the Gaussian 

mean vector of the static spectral parameters in the trained context-

dependent HMMs.  

2.4. Estimating the mode of an NADE 

Given the model parameters{ , , , }W U a b of an NADE which are 

estimated by directly maximize the average log-likelihood of the 

parameters on the training set, the mode of the NADE is defined by 

   
1h  2h  3h

 

4h  

1v  2v  3v  4v  

1v  2v  3v  4v  

h  

v  
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where V means the unit number of visible layer. Eq. (11) can be 

solved by sequentially determining each
iv according to ( | )iP v i

v  

which is a Gaussian distribution as shown in Eq. (5). During the 

estimating of 
*

v , two kinds of initialization are used. One is the 

normal initialization. 
1

h is directly calculated by Eq. (6) with 

initial
1v set as zero. Another is the binary initialization. We firstly 

calculate the means of ( 1... )i i Vh for all training vectors by Eq. 

(6), these means are averaged and made binary using a fixed 

threshold of 0.5 to get
1h . Finally, we can use either of these two 

initialization methods to calculate
1

h and further get the mode of 

NADE
*

v by utilizing Eq. (5) and (6) iteratively.  
This process is more efficient than the mode estimation for the 

RBMs [8]. In contrast to the single Gaussian distribution, this 

estimated mode avoids the averaging effect and maintains the 

detailed characteristics of the spectral parameters. 

 

3. EXPERIMENTS 

3.1. Experimental conditions 

A Chinese speech database recorded by a professional female 

speaker was used in our experiments. It consists of 1,000 sentences 

together with the segmental and prosodic labels. 800 sentences 

were selected randomly for training and the remaining 200 

sentences were taken as a test set. Speech waveforms were 

recorded in 16kHz/16bit format. The acoustic features, including 

the logarithmized F0, 41-order mel-cepstra (including 0-th order), 

were extracted from the spectral envelope with a 5ms frame shift 

by STRAIGHT analysis. The F0 and spectral features included 

static, velocity, and acceleration components. A 5-state left-to-right 

with no skip HMM structure was used to train context-dependent 

phone models. The covariance matrix of the single-mixture 

Gaussian distribution at each HMM state was set to be diagonal. 

Decision-tree-based model clustering was applied in the context-

dependent model training and we got 1,612 context-dependent 

states in total for the mel-cepstral stream. 

       During the modeling of mel-cepstra, the visible units of 

NADE correspond to 40-order mel-cepstra (excluding 0-th order). 

During the modeling of spectral envelopes, the FFT length of the 

STRAIGHT analysis was set to 1024, so there are 513 visible units 

in the NADEs. For each context-dependent state, the spectral 

amplitudes at all frequency points were logarithmized. These two 

features were normalized to zero mean and unit variance. The 

learning rate was 0.001 and 200 epochs were executed for 

estimating each NADE. When it comes to the RBM training, we 

refer to the configuration in [8].  

 

3.2. NADE training 

 

At first we take the performance of the RBM and NADE in 

modeling the distribution of mel-cepstra and spectral envelopes on 

a specific state for comparison. A context-dependent state was 

chosen in our experiment. There are 520 samples in this state for 

training and 200 samples used for test. The number of hidden units 

Table 1. The average log-likelihood (ALL) on the training and test 

sets when using RBM and NADE to model the (a) mel-cepstra and 

(b) the spectral envelopes of a specific state. The numbers in the 

brackets means the hidden unit numbers of the RBMs and NADEs. 

(a) 

 

Model 

ALL 

train 

ALL 

test 

number of 

parameters 

RBM(1) 

RBM(10) 

RBM(50) 

RBM(200) 

RBM(1000) 

NADE(1) 

NADE(10) 

NADE(50) 

NADE(200) 

NADE(1000) 

-55.146 

-51.293 

-50.969 

-52.605 

-55.055 

-56.761 

-45.497 

-43.950 

-44.329 

-45.403 

-55.296 

-52.443 

-52.233 

-53.535 

-55.715 

-56.347 

-48.109 

-47.066 

-47.080 

-47.960 

81 

450 

2090 

8240 

41040 

121 

850 

4090 

16240 

81040 

 

(b) 

 

Model 

ALL 

train 

ALL 

test 

number of 

parameters 

RBM(1) 

RBM(10) 

RBM(50) 

RBM(200) 

RBM(1000) 

NADE(1) 

NADE(10) 

NADE(50) 

NADE(200) 

NADE(1000) 

-642.577 

-628.847 

-573.244 

-551.845 

-552.721 

-626.159 

-516.682 

-481.835 

-477.288 

-477.829 

-636.646 

-624.837 

-591.263 

-572.693 

-560.905 

-635.720 

-530.044 

-490.604 

-483.079 

-480.993 

1027 

5653 

26213 

103313 

514513 

1540 

10783 

51863 

205913 

1027513 

 

in the RBMs and NADEs ranged from 1 to 1,000. The average log-

likelihood (ALL) on the training and test sets for different models 

are shown in Table 1 for the mel-cepstra and the spectral envelopes 

respectively. With the increase of hidden unit numbers, the RBM 

and NADE both show good ability of generalization without the 

tendency of over-fitting. From Table 1, we can also see that, when 

the number of hidden units is more than one, NADEs have much 

better log-likelihood on the train data and test data than the RBMs 

either for the mel-cepstra or the spectral envelopes. The reason is 

that NADE can provide exact gradients of model parameters 

without any approximations to the partition function. This 

demonstrates the superiority of the NADE over the RBM which 

needs some approximations to calculate the gradients by the CD 

algorithm [13]. 

Considering the computational cost in the RBM and NADE 

training, the number of hidden units was set to 50 in the following 

experiments. At last, six systems were constructed for comparison 

as listed in Table 2. The ALL on the whole training set for these 

six systems are compared in Table 3. 

 

3.3. Mode estimation for the NADEs 

 

In the mode estimation of MCP-NAD, we used the binary 

initialization and obtained speech with better perception than that 

of using normal initialization. However, in the mode estimation of 

SPE-NAD systems, the binary initialization would bring some 

noises to the speech and reduce its quality. Therefore, we used 

normal initialization instead. The ALL over all states are listed in 

Table 4 for six systems. From this table, we see that the NADE m- 
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Table 2. Summary of different systems constructed in the 

experiments. The numbers in the brackets means the hidden unit 

numbers of the RBMs and NADEs. 

System Spectral Features State PDF 

MCP-GAU 

MCP-RBM 

MCP-NAD 

SPE-GAU 

SPE-RBM 

SPE-NAD 

mel-cepstra 

mel-cepstra 

mel-cepstra 

spectral envelope 

spectral envelope 

spectral envelope 

single Gaussian 

RBM(50) 

NADE(50) 

single Gaussian 

RBM(50) 

NADE(50) 

 

Table 3. Average log-likelihood on the whole training set for all 

six systems. 

System ALL 

MCP-GAU 

MCP-RBM 

MCP-NAD 

SPE-GAU 

SPE-RBM 

SPE-NAD 

-56.758 

-54.430 

-47.797 

-727.915 

-613.469 

-487.055 

 

Table 4. Average log-likelihood of Gaussian means, the RBM and 

NADE modes for the NADEs trained in the MCP-NAD and SPE-

NAD respectively. 

System ALL 

MCP-GAU 

MCP-RBM 

MCP-NAD 

SPE-GAU 

SPE-RBM 

SPE-NAD 

-47.831 

-46.469 

-37.758 

-666.176 

-516.128 

-471.415 

 

odes have much higher log-likelihood than the Gaussian means 

known to have the highest probability for a single Gaussian 

distribution. This implies the superiority of NADE over Gaussian 

mixture model in avoiding the averaging effect during the process 

of maximum likelihood parameter generation.  

The spectral envelopes which correspond to the Gaussian 

mean of the SPE-GAU system, the estimated mode of the SPE-

RBM system and the SPE-NAD system for one state are illustrated 

in Fig. 2. We can see that the estimate state mode of the SPE-RBM 

and the SPE-NAD have much sharper formant structure and less 

over-smoothing than the envelopes of the SPE- GAU. 

 

3.4. Subjective evaluation 

 

The subjective evaluation was to compare among the MCP-GAU, 

MCP-RBM, MCP-NAD, SPE-RBM, SPE-NAD systems. In these 

systems, there were no differences in the modeling and generation 

of duration and pitch. Therefore, the evaluation focused on the 

difference of naturalness that caused by the different spectral 

modeling method. Fifteen sentences out of training set were 

randomly selected and synthesized using these five systems 

respectively. Six groups of preference tests were conducted and 

each one was to make comparison between two of the five systems 

as shown in Table 5. Each of the pairs of synthetic sentences were 

evaluated in random order by seven Chinese-native listeners. Table 

5 shows the preference scores and the p-values given by t-test. 

From this table, we can see that introducing NADEs to be the 

density models can achieve significantly better naturalness than the 

single Gaussian distribution based system. Besides, adopting spect- 

 
Fig. 2. The spectral envelopes which correspond to the Gaussian 

mean of the SPE-GAU system, the estimated mode of the SPE-

RBM system and the SPE-NAD system for one state. 

 

Table 5. Subjective preference scores (%) among speech 

synthesized by MCP-GAU, MCP-RBM, MCP-NAD, SPE-RBM 

and SPE-NAD systems, where N/P indicates “No Preference” and 

p means the p-value given by t-test between two compared systems. 

MCP-

GAU 

MCP-

RBM 

MCP-

NAD 

SPE-

RBM 

SPE-

NAD 

N/P p 

11.43 

11.43 

 

14.28 

-- 

-- 

40.00 

-- 

10.48 

-- 

-- 

-- 

-- 

78.09 

69.52 

-- 

24.76 

-- 

-- 

-- 

-- 

-- 

-- 

28.33 

-- 

-- 

-- 

79.05 

58.10 

58.33 

48.57 

10.48 

20.00 

6.67 

17.14 

13.34 

0.00 

0.00 

0.00 

0.00 

0.027 

0.00 

 

ral envelopes as the features in NADE is better than that of using 

mel-cepstra for preserving the cross-dimensional correlations. 

Finally, the NADE-based systems outperform the RBM-based ones 

for both mel-cepstra and spectral envelopes. 

 

4. CONCLUSIONS 

 

We have proposed an NADE-based spectral modeling method in 

this paper. The spectral envelopes extracted by STRAIGHT 

vocoder and the mel-cepstra derived from the envelopes are 

modeled by an NADE for each HMM state. At synthesis time, the 

mode vectors of the trained NADE are calculated and replace the 

Gaussian means for parameter generation. Our experimental results 

show the superiority of NADEs over Gaussian mixture models in 

describing the distribution of spectral envelopes as a density model 

and in alleviating the over-smoothing effect at the synthesis time. 

When comparing the ability of model generalization between 

RBMs and NADEs, the experimental results show that NADEs 

demonstrates better performance than RBMs due to the accurate 

calculation of gradients at training time. Incorporating the dynamic 

features of mel-cepstra and spectral envelopes into NADE 

modeling and extending the spectral features from the spectral 

envelopes to the FFT spectrum will be the tasks of our future work. 
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