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ABSTRACT

We introduce a scheme to address the trade–off between the
identification rate, search and memory complexities in large–
scale identification systems. We use a special database or-
ganization by assigning database entries to a set of possibly
overlapping clusters. The clusters are generated based on
statistics of both database entries and queries. The decoding
procedure is accomplished in two stages. First, a list of clus-
ters related to the query is detected. Then, refinement checks
are performed on members of the detected clusters to pro-
duce a unique index. We investigate the minimum achievable
search complexity for binary symmetric sources.

Index Terms— Content identification, identification ca-
pacity, clustering.

1. INTRODUCTION

Identification by nearest neighbor search is a research prob-
lem that emerge in vast signal processing tasks including,
but not limited to, human biometrics [1], multimedia secu-
rity (copy detection, content identification and tracking [2])
and physical object security [2].

An identification system consists of two main phases. In
the enrollment phase, feature vectors representing digital con-
tents, humans, multimedia contents or physical objects are ex-
tracted and stored in a database. In the identification phase,
a query, i.e., a noisy and degraded counterpart of an enrolled
data, is presented for identification, which is accomplished by
comparing to feature vectors stored in the database.

Willems et al. [1] investigated the capacity of an identifi-
cation systemC, which is defined as the maximum achievable
exponential rate of the number of distinguishable objects in a
database. They showed that approximately 2NR items can be
distinguished from each other, if and only if R < C and N ,
the dimensionality of the feature space, becomes very large.
They showed that the identification capacity C is equal to the
mutual information between the enrollment and identification
observations, see also [3].

To achieve such a capacity, an identification system can
perform an exhaustive search on all entries of the database
to find the best match. However, it is not feasible in modern
applications where the size of a database can be billions. The

conventional approach to reduce the search complexity is to
use a multidimensional index structure. Space-partitioning
methods like quadtree [4] divide the data space along pre-
defined planes. Data-partitioning index trees like R-tree [5]
divide the data space according to the distribution of data.
Although these access methods generally work well for low-
dimensional spaces, their performance degrades dramatically
as the number of dimensions increases – a phenomenon
known as the curse of dimensionality [6].

Weber et al. [7] compared indexing techniques to meth-
ods based on vector-approximations (VA). Weber et al. [7]
showed that for searching in high-dimensional spaces, quan-
tization methods like VA outperform indexing methods. In
an information-theoretical context, they can be referred to as
quantization methods.

This paper is a continuation of the work initiated by
Willems [8] and generalized by Farhadzadeh et al. [9]. The
main goal of this sequel is to introduce a search strategy
based on a two–stage decoding scheme, so as to achieve the
identification capacity and to reduce the search complexity.
Section 2.1 presents the two–stage identification system. Sec-
tion 3 investigates minimum search complexity of a binary
symmetric system. Section 4 shows the simulation results to
validate the theoretical findings. Concluding remarks follow
in Section 5.

2. MODEL DESCRIPTION

2.1. Model Description

The usual identification setup (Fig. 1) consists of two stages:
enrollment and identification. In the enrollment phase, a ran-
domly generated sequence (vector) x(w) of length N is ex-
tracted from each item w and stored in a database. x =
(x1, . . . , xN ) has symbols xn, 1 ≤ n ≤ N taking values in
a discrete alphabet X . The database C is a collection of M
indexed sequences denoted by

C = {x(1), . . . ,x(M)}. (1)

Let’s assume the components of X = (X1, X2, · · · , XN ) are
independent and identically distributed (i.i.d.) according to
{Qs(x);x ∈ X}. Hence, the probability that sequence x oc-
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Fig. 1: A two-stage identification system.

curs for the item indexed by w is

Pr{X(w) = x} = ΠN
n=1Qs(xn). (2)

Note that this probability does not depend on the index w. All
sequences in C are generated prior to the identification phase.

To organize the list of enrolled items, we use a set of
cluster centroids Cu = {u(1), . . . ,u(M1)}, where u =
(u1, . . . , uN ) and un, 1 ≤ n ≤ N take values in a discrete
alphabet U . Consider the cluster centroids are generated
according to

P (u) =
∑
x,y

Qs(x)Qc(y |x)PU |XY (u |x, y) (3)

for a given PU |XY (u |x, y), where y ∈ Y is the output of a
memoryless observation channel {Qc(y |x);x ∈ X , y ∈ Y}.
Equation (3) indicates that the cluster centroids are related
to both the items x and the observation channel output y =
(y1, . . . , yN ). For each u(w1) ∈ Cu, we construct a list of
enrolled itemsL(w1) = {w : d(x(w),u(w1)) ≤ δN} having
cardinalityM2. d(·, ·) indicates a similarity metric and δ ≥ 0.

In the identification phase, an enrolled item will be pre-
sented for identification. The probability of each item w to be
presented for identification are all equal, and

Pr{W = w} = 1/M, ∀w ∈ {1, 2, · · · ,M}. (4)

When item w is presented for identification, its correspond-
ing sequence x(w), which is “selected” from the database C,
is observed through the observation channel. The resulting
channel output sequence is y, and

Pr{Y = y |X(w) = x} = ΠN
n=1Qc(yn |xn). (5)

After observing y, identification starts by constructing a
list of cluster indices w1 with cardinality M3. This index list
w1 =

(
w1(1), . . . , w1(M3)

)
, w1(i) ∈ {1, 2, · · · ,M1}, 1 ≤

i ≤ M3, is constructed by a so-called “first decoder” dec1, a
device having no knowledge of the entries x that were gener-
ated. Hence

w1 = dec1(y). (6)

Then, at the second decoding stage, a refinement deci-
sion is made, based on the list of cluster indices w1 and their
members. This decision consisting of w1 ∈ {1, 2, · · · ,M1}
and w2 ∈ {1, 2, · · · ,M2} is taken by a so-called “second de-
coder” dec2. Hence

(w1, w2) = dec2(y,w1, C). (7)

Finally, a combiner com based on the estimated cluster
index w1 and the index w2 forms an estimate of the index of
the presented item for identification. Hence

ŵ = com(w1, w2). (8)

We assume that ŵ ∈ {1, 2, · · · ,M}.
The reliability of our identification system is measured by

the error probability

PE = Pr
{
Ŵ 6= W

}
. (9)

2.2. Statement of Result

The rate quadruple (R1, R2, R3, R) with R ≥ 0 is called
achievable, if for ε > 0 and N large enough, there exist map-
pings dec1(·), dec2(·, ·, ·), and c(·, ·), such that

log2(M1) ≤ N(R1 + ε),

log2(M2) ≤ N(R2 + ε),

log2(M3) ≤ N(R3 + ε),

log2(M) ≥ N(R− ε),

and Pr{Ŵ 6= W} ≤ ε. (10)

We call R identification rate, R1 cluster rate, R2 refinement
rate, and R3 detected cluster list rate. The following theorem
states a fundamental trade-off between these rates to achieve
the identification capacity.

Theorem 1. The region of achievable rate quadruples R for
the identification system introduced above is given by{

(R1, R2, R3, R) :R1 ≥ I(X,Y ;U),

R2 ≥ max(0, R− I(X;U)),

R3 ≥ I(X;U |Y ),

0 ≤ R ≤ I(X;Y ),

for P (x, y, u) = Qs(x)Qc(y |x)P (u |x, y),

where |U| ≤ |Y| · |X |+ 2
}
, (11)

where I(· ; ·) indicates the mutual information [10]. We refer
the readers to [9] for the proof of the theorem consisting of
the achievability, the converse, and the cardinality bound.

Following Theorem 1, the total memory–complexity ex-
ponent of the identification setup related to storage of the
cluster–centroids and their corresponding items [9] is

Me = max

{
I(U ;X,Y ) +R− I(U ;X), I(U ;X,Y )

}
.

(12)
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The total search–complexity exponent related to the two–
stage decoding scheme corresponding to finding related clus-
ters for a given query y (cluster check) and checking their
members (refinement check) [9] is

Se =

{
I(U ;X,Y ) , R ≤ I(U ;X) + I(U ;Y ),

R+ I(U ;X|Y )− I(U ;X), R ≥ I(U ;X) + I(U ;Y ).

(13)

Remark 1. Under Markov chain condition X ↔ Y ↔ U ,
the region of achievable rate R coincides with the results
shown in [8]. In this case R3 = 0, which means that the first
decoder is a unique decoder, sending a single u to the second
decoder. Moreover, R1 +R2 ≥ R, which means that clusters
can overlap, i.e., each item can belong to multiple clusters.

Remark 2. Under Markov chain condition U ↔ X ↔ Y ,
R1 +R2 = R, which means that the clusters are disjoint, i.e.,
each item belongs to at most one cluster. This condition is
exploited in an information retrieval system [11], where the
authors proposed a disjoint clustering based on k-means. Un-
der this condition, the identification system can achieve iden-
tification capacity if the first decoder detects a list of clusters.

3. MINIMUM SEARCH COMPLEXITY

Consider a common case of the above identification system.
Assume binary uniform sequences, thusQs(x) = 1/2 for x ∈
X = {0, 1}. Also, assume a binary symmetric observation
channel, thus Qc(y |x) = q if y 6= x, where y ∈ Y = {0, 1}.
Let u ∈ U = {0, 1}.

Example 1. We generate 10, 000 trials of the conditional
distribution P (u |x, y) at random. The four relevant proba-
bilities p1 , PU |XY (0 | 0, 0), p2 , PU |XY (0 | 0, 1), p3 ,
PU |XY (0 | 1, 0) and p4 , PU |XY (0 | 1, 1) are uniformly cho-
sen over [0, 1]. Based on (12) and (13), Fig. 2 (red o’ s) shows
the search–memory complexity exponents of the binary bio-
metric system with the rate R = 1/2 and q = 0.1. Fig. 2
(blue ×’s) and (black ·’s) show the exponent of the search–
memory complexity under Markov chain X ↔ Y ↔ U and
U ↔ X ↔ Y conditions, respectively. Clearly, the proposed
scheme under the general condition can achieve a better
search-complexity compared to those Markov conditions.

We evaluate the minimum search–complexity exponent
evaluated by (13) and its corresponding conditions of the bi-
nary system.

Theorem 2. Let Qs(x) = 1/2 for x ∈ {0, 1}, and let
Qc(y |x) be a BSC with the cross-over probability 0 ≤
q < 1/2 and u ∈ {0, 1}. The minimum search–complexity
exponent S∗e = (1 − q)(1 − H2(p∗1)) in an identifica-
tion system using two–stage decoding can be achieved if
P (y |u) and P (x |u) are BSCs with the same cross-over
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Fig. 2: (red o) indicate the exponent of the search–memory
complexity of the proposed scheme using the conditional dis-
tribution P (u|x, y). (blue ×) and (black ·) show the com-
plexity using the conditional distribution P (u|y) and P (u|x)
under the condition X ↔ Y ↔ U and U ↔ X ↔ Y , re-
spectively. (Circled �) shows the minimum achievable search
complexity.

probability Pb = p∗1 ? q/2 = H−12 (1−R/2), where p∗1 =(
H−12 (1−R/2)− q/2

)
/(1 − q), H2(a) = −a log2(a) −

(1 − a) log2(1 − a) for 0 ≤ a ≤ 1/2 denotes the binary en-
tropy function,H−12 : [0, 1]→ [0, 1/2] is its inverse mapping,
and (a ? b) = a(1− b) + b(1− a).

Proof. We only give an outline proof. First, let’s consider
minimization of the search complexity Se = I(U ;X,Y )
subject to g1(p) = R − I(U ;X) − I(U ;Y ) ≤ 0 in
(13). This is a non-convex optimization. The point p∗ =
(p∗1, p

∗
2, p
∗
3, p
∗
4) = (p∗1, 1/2, 1/2, 1 − p∗1) satisfies Karush–

Kuhn–Tucker (KKT) conditions [12] concerning the La-
grangian function L(p, µ) = Se(p) + µ1g1(p). Conse-
quently, p∗ is a local minimum. Then, the Second-Order-
Sufficient-Condition [12] shows that p∗ is a strict local min-
imum. To prove that p∗ is a global minimum, we show as
follows that p∗ is the only point satisfying KKT conditions.
If µ 6= 0, ∇L(p, µ) = 0 and µg1(p) = 0 leads to five
linearly independent equations which has only one solution
p∗ and µ∗. On the other hand, if µ = 0, ∇Se = 0 has
solutions where p1 = p2 = p3 = p4. However, under this
solution the primal feasibility condition g1(p) = R < 0
can not be satisfied since R > 0. Finally, following the
fact that µ∗ = (log

1−p∗
1

p∗
1

)/(2 log
1−p∗

1?q/2
p∗
1?q/2

), 0 ≤ p∗1 ≤ 1/2

is a monotonically decreasing function [13], the Hessian of
the Lagrangian function is positive-definite over the sub-
space S = {(a1, a2, a3, a1) : a1, a2, a3 ∈ R}. Similarly,
p∗ minimizes the other non-convex minimization problem
Se = R− I(U ;X) + I(U ;X|Y ) subject to g1(p) ≥ 0. Note,
g1(p) is active for both problems, i.e., g1(p) = 0. Thus, both
minimizations lead to the same solution.

Remark 3. The optimal solution p∗ is achieved when
I(U ;X) = I(U ;Y ) and equivalently I(U ;X|Y ) = I(U ;Y |X).
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Table 1: Performance and search complexity analysis of two–stage identification setup.

Distortion
PE (%)

clustering Search comp. Me

model Param. k-medians BBMM k-medians BBMM
k-medians BBMM

M1 M2 ≈ M3 M1 M2 ≈ M3 Se usage (%) Se usage (%)

AWGN
(PSNR)

40 dB 0.019 180 115 30 220 473 5 0.19 16.73 0.17 10.68 0.22 0.26
30 dB 0.024 180 115 70 220 568 6 0.21 38.85 0.18 14.95 0.22 0.26
20 dB 0.389 180 115 125 220 946 10 0.22 69.33 0.2 35.14 0.22 0.27

JPEG
(QF)

75 0.010 180 115 27 220 378 4 0.18 15.06 0.16 8.67 0.22 0.25
50 0.014 180 115 30 220 568 5 0.19 16.73 0.17 12.64 0.22 0.26
25 0.016 180 115 50 220 662 7 0.20 27.79 0.19 19.62 0.22 0.27

HistEQ 3.140 180 115 140 220 1236 13 0.22 87.32 0.21 50.91 0.22 0.28

In other words, the minimum search complexity in binary
scheme can be realized when M3 = 2NI(U ;X|Y ), the num-
ber of detected clusters by the first decoder, is equal to
2NI(U ;Y |X), the number of clusters contain every item.

Remark 4. The memory complexity exponent corresponding
to the minimum search complexity exponent is Me = R/2 +
(1 − q)(1 −H2(p∗1)). Fig.2 (Circled �) shows the minimum
achievable search complexity exponent and its corresponding
memory complexity exponent related to Example 1.

4. NUMERICAL EVALUATION

It should be noted that our theoretical findings accurately hold
as N , the dimension of the feature space, becomes very large.
However in practice, we usually deal with finite data of fi-
nite dimensionality. Consequently, real datasets follow some
specific structure in a finite dimensional space. To capture
this structure, we exploit two different binary clustering ap-
proaches, as usually fingerprints for identification are binary.
One clustering approach is k-medians [14] that results in dis-
joint clusters. The other one is a Bayesian Bernoulli Mixture
Model (BBMM) [6] that naturally has overlapped clusters.

Using BBMM clustering, the model which generates a bi-
nary database C in (1) is assumed to be

P (C, B |Cu) =

M∏
i=1

M1∏
j=1

[
1

M1

N∏
k=1

uk(j)
xk(i)(1− uk(j))

1−xk(i)

]bij

(14)

p(Cu) =

M1∏
j=1

N∏
k=1

Beta(ujk |αjk, βjk), (15)

where BM×M1 = (bij) is a binary assignment matrix of size M ×
M1, bij = 1 specifies that the i’th item belongs to the j’th cluster,
xk(i) denotes the k’th sample of the i’th item and uk(j) denote the
k’th sample and the j’th cluster centroid. Beta indicates the beta
distribution, and αjk and βjk are hyper-parameters (both are set to
1 here). In this scheme, all clusters are weighted equally, i.e. 1/M1.
In this way, the cluster sizes are more balanced, which is closer to
the theoretical results in Theorem 1. To fit the model to the data,
we follow the Variational-Bayes approach with a mean-filed approx-
imation [6], which alternatively updates until convergence B̃ and

{ũjk}, the learning result of B and Cu, respectively. The benifit
of such learning is two-fold. First, a codebook can be generated by
binarizing B̃ so that each sample is assgined to M3 clusters. Sec-
ond, the most-likely cluster(s) which generate a given query y can
be estimated using the learned {ũjk}.

We employ a real image database consisting of 20, 828 gray–
scaled images from different categories of ImageNet (http:
//www.image-net.org/). All images are resized to 384×512
pixels. We extract binary fingerprints from each image as follows
(see [2, 15]). First, each image is divided into 16 × 16 blocks.
Then, the 2D DCT of each block is computed. The feature vector
is constructed by concatenating the DCT coefficients at the coordi-
nates (1, 2) inside each block, resulting in a vector of length 768.
Finally, the fingerprint of length N = 64 from each feature vector is
extracted by using Random Projections [2] followed by a one-level
scale quantizer. The identification rate is R = (log2M)/N = 0.22.

Table 1 shows the performance of the identification system
based on the two–stage decoding with different M1 and M2, un-
der various distortions such as Additive White Gaussian Noise
(AWGN) with different Peak Signal to Noise Ratios (PSNR)
PSNR= 10 log10(255

2/σ2
Z ), JPEG compression with different

Quality Factors (QF) and Histogram Equalization (HistEQ). To
highlight the search complexity reduction, we added the column
usage(%) which indicate the percentage of the whole database used
to identify a query. We keep the error probabilities PE of k-medians
and BBMM the same as the exhaustive search. Note, search and
memory complexity exponents of exhaustive search are equivalent
to R, i.e., Me = Se = R. And, the database usage in exhaus-
tive search is 100%. Table 1 shows that clustering approaches
like BBMM possessing overlapped clusters reduce search complex-
ity considerably more than disjoint clustering like k-medians (see
usage(%) columns).

5. CONCLUSIONS

We investigate the search and memory complexity of identification
systems using a two–stage decoding strategy. We evaluate lower
bounds to achieve the identification capacity on the necessary num-
ber of clusters, number of items in each cluster, and number of de-
tected clusters at the first stage of decoding. We derive specific
conditions to reach minimum search complexity for binary sym-
metric sources. We design a search scheme based on k-medians
and Bayesian BMM to testify our theoretical findings. Numerical
evaluation shows that using overlapped clustering approaches reduce
search complexity more than disjoint clustering.
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