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ABSTRACT

The autocorrelation does not differentiate between determin-
istic and stochastic signals, as phase information is not main-
tained. This paper introduces the autoconvolution for both de-
terministic and stochastic signals. The autoconvolution with
the autocorrelation provides a second-order description that
discriminates between deterministic and stochastic signals –
even those with identical power spectra. We also introduce
the panorama as the Fourier transform of the autoconvolution.
The power spectrum and panorama admit a two-dimensional
spectral representation that has unique and powerful proper-
ties, such as detecting deterministic sinusoidal components
in correlated stochastic noise without knowledge of the sinu-
soidal frequencies or amplitudes. Additional extensions are
indicated.

Index Terms— autocorrelation, convolution, covariance
matrices, frequency estimation, phase estimation, spectral
analysis.

1. INTRODUCTION
The autocorrelation is a standard second-order tool for signal
analysis. It is a one-dimensional function of time that, for
both deterministic and stochastic finite-power signals x(t), is
given by

r(τ) = lim
T→∞

1
2T

∫ T

−T
E{x(t)x(τ + t)}dt, (1)

where E{·} denotes the statistical expectation operand. The
Fourier transform of the autocorrelation is the power spec-
trum, R(ω) which is used in numerous applications, particu-
larly for signals that are nearly-periodic or have a well-defined
harmonic structure [1].

Being an integral transform, the autocorrelation function
of x(t) is not unique, and two different signals can have the
same r(τ). For example, the signal x(t) = Aδ(t− t0) for any
time delay t0 has r(τ) = A2δ(τ), where δ(τ) is the Dirac
unit impulse function. A zero-mean wide-sense stationary
uncorrelated random process with signal power A2 also has

r(τ) = A2δ(τ). This non-uniqueness is due to the phase in-
formation contained in x(t) which is not represented in either
r(τ) or R(ω). To further solidify this point, consider the sig-
nal x(t) = A cos(ω0t + φ), where A and ω0 are fixed and φ
is either a constant or a random variable with any probabil-
ity density pφ(φ). The autocorrelation does not represent the
information in φ, such that r(τ) = 0.5A2 cos(ω0τ) indepen-
dent of the nature of φ.

A second-order description of x(t) that maintains phase
information of x(t) can be constructed using a reference sig-
nal y(t) and the cross-correlation function rxy(τ) of x(t) and
y(t) [1]. Cross-correlation requires the existence of the refer-
ence signal y(t) that is related to x(t). Any strategy of gen-
erating y(t) from x(t) requires user intervention, such as data
partitioning, signal averaging, and/or additional processing.
To our knowledge, no prior second-order description of x(t)
has been developed to carefully represent both deterministic
and stochastic signals simultaneously, uniquely, and with re-
gard to phase.

In this paper, we introduce a new second-order signal rep-
resentation called the autoconvolution. The autocovolution,
when combined with the autocorrelation, provides new in-
sight into signals containing both deterministic and stochas-
tic components. In particular, the autoconvolution of a wide-
sense stationary random process with a finite-energy autocor-
relation is zero, and thus the autoconvolution retains informa-
tion about the deterministic components only. Moreover, we
introduce the panorama as the Fourier transform of the auto-
convolution. Combining the power spectrum and panorama
within a two-dimensional matrix representation, a number of
useful results are obtained. In particular, we demonstrate that
an eigenanalysis of this matrix as a function of frequency
identifies the presence of sinusoidal components obscured by
random noise, even in situations where the noise is correlated
and thus exhibits peaks in its power spectrum.

2. THE AUTOCONVOLUTION

For a finite-power signal x(t) containing both deterministic
and stochastic components, the autoconvolution of x(t) is de-
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fined as

p(τ) = lim
T→∞

1
2T

∫ T

−T
E{x(t)x(τ − t)}dt. (2)

Comparing (2) with (1), we see that the difference is a nega-
tive sign on the integration argument within the second signal
of the integration. In the limit at T →∞, p(τ) is the expected
value of the convolution of x(t) with itself. The expectation
E{·} assumes that the joint p.d.f. px(t1),x(t2)(x1, x2) exists
for any pair (t1, t2).

The autoconvolution behaves differently than the autocor-
relation for deterministic signals and wide-sense stationary
stochastic signals, respectively. The following theorems in-
dicates this fact, the proofs of which are omitted for brevity.

Theorem 1.1: For a wide-sense stationary random process
x(t) with a finite-energy autocorrelation function such that∫ ∞

−∞
|r(τ)|dτ < ∞ (3)

the autconvolution p(τ) of x(t) is zero.

Theorem 1.2: Consider a deterministic signal x(t) consisting
of a sum of sinusoids of the form

x(t) =
N∑
n=1

An cos(ωnt+ φn) (4)

where the triple {An, ωn, φn} denote the { amplitude, fre-
quency, phase } of each sinusoidal component. Then, the au-
tocorrelation and autoconvolution of x(t) are

r(τ) =
N∑
n=1

A2
n

2
cos(ωnτ) (5)

p(τ) =
N∑
n=1

A2
n

2
cos(ωnτ + 2φn). (6)

Remark 1: The above results already indicate one useful ap-
plication of the autoconvolution: it produces a signal that en-
codes the amplitudes, frequencies, and phases of a sum of si-
nusoids while effectively removing any stochastic noise com-
ponent that may be present in x(t).
Remark 2: Taken together, r(τ) and p(τ) provide a two-
dimensional second-order characterization of x(t). Although
vector notation could be used, we are motivated by reasons
to become clear shortly to place these quantities in a (2 × 2)
power signal matrix

R(τ) =
[

r(τ) p(τ)
p(−τ) r(τ)

]
. (7)

When x(t) is wide-sense stationary with finite energy auto-
correlation, we have R(τ) = r(τ)I, whereas for a determin-
istic sum-of-sinusoids, R(τ) will have four non-zero entries
in general.

3. THE PANORAMA

The autocorrelation forms the basis for spectral analysis
through the Fourier transform, yielding the power spectrum

R(ω) =
∫ ∞
−∞

r(τ)e−jωτdτ. (8)

Since the autoconvolution p(τ) is also a function of time, we
define the panorama P (ω) of x(t) as the Fourier transform of
p(τ), or

P (ω) =
∫ ∞
−∞

p(τ)e−jωτdτ. (9)

Due to r(τ) being real-valued and even symmetric, R(ω) is
Hermitian symmetric. The panorama P (ω), however, does
not possess such symmetry properties.

The Fourier transform of the power signal matrix R(τ) is
termed the power spectrum matrix and has the form

S(ω) =
[
R(ω) P (ω)
P (−ω) R(ω)

]
=
[
R(ω) P (ω)
P ∗(ω) R(ω)

]
, (10)

where the last part of (10) follows because x(t) is real-valued.

Remark 3: The form of (10) is identical to the augmented
covariance matrix used to characterize non-circular random
signals in complex-valued signal processing applications [2]–
[13]. Thus, for real-valued signals, the power spectrum mea-
sures the covariance of the signal in the frequency domain,
and the panorama measures the pseudo-covariance of the sig-
nal in the frequency domain. Signals that are wide-sense sta-
tionary have Fourier components that are circular, whereas
signals that are deterministic have Fourier components that
are highly non-circular. The following theorem illustrates the
utility of this statement.

Theorem 2.1: Consider the signal containing a sum of deter-
ministic sinusoidal components corrupted by random noise,

x(t) = η(t) +
∞∑
n=1

An cos(ωnt+ φn), (11)

where η(t) is a wide-sense stationary random process with
power spectrum |H(ω)|2, such that

∫∞
−∞ |H(ω)|2dω < ∞.

Then, the power spectrum matrix is given by

S(ω) = |H(ω)|2I

+
∞∑
n=1

A2
n

4

(
δ(ω − ωn)

[
1

e−j2φn

] [
1 ej2φn

]
+δ(ω + ωn)

[
1

ej2φn

] [
1 e−j2φn

])
(12)

Corollary 2.1: Consider an small bandwidth B containing
only one sinusoidal component with frequency ωi in x(t), and
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let SB(ωn) be the corresponding power spectrum matrix inte-
grated over the bandwidth (ωn−0.5B,ωn+0.5B) containing
ωi. Then,

SB(ωn) =

 A
2
i

4
+Have(ωn)B

A2
i

4
ej2φi

A2
i

4
e−j2φi

A2
i

4
+Have(ωn)B

, (13)

which has eigenvalues equal to

λB,max(ωn) =
A2
i

2
+Have(ωi)B (14)

λB,min(ωn) = Have(ωn)B (15)

and a principal eigenvector of

qB,max(ωn) =
1√
2
[1 e−j2φi ]T , (16)

where Have(ωn) is the average value of the noise spectrum
within the small bandwidth. At other frequencies ωn that do
not lie near a sinusoidal frequency ωi, SB(ωn) is diagonal
and equal to Have(ωn)BI.

Remark 4: The above theorem and corollary indicate that nar-
rowband filtering can be used to detect sinusoids in broadband
noise using the eigenstructure of the power spectrum matrix
alone. If the bandwidth B near a selected frequency ωn is
chosen to be small such that Have(ωn)B � 0.5A2

i , then the
matrix SB(ωn) will be close to singular, indicating the pres-
ence of a sinusoidal component. At other frequencies, the ma-
trix SB(ωn) will be diagonal. Numerical simulations in the
next section verify these claims. Moreover, the eigenvector
qB,max(ωn) can potentially be used to estimate the relative
phases of the sinusoidal component up to a sign change, as a
quadratic function of any signal cannot estimate absolute sig-
nal polarity, although this capability is still under investiga-
tion. These results make use of the bandwidth noncircularity
NB(ωn) defined as

NB(ωn) =
λB,min(ωn)
λB,max(ωn)

, (17)

which, under the assumptions above, will have the value

NB(ωn) =


(

1 +
A2
n

2B|H(ωn)|2

)−1

,
if a sinusoid
is present.

1, otherwise.
(18)

4. NUMERICAL SIMULATIONS

We explore the use of the autoconvolution and panorama via
numerical simulations using the following procedure:

1. Form the autocorrelation r(τ) and autoconvolution p(τ) by
suitable ensemble averaging.

2. Calculate the spectrum R(ω) and pseudo-spectrum P (ω)
via Fourier transforms.
3. Over bands of constant bandwidth B and different center
frequencies ωn, estimate the (2 × 2) matrix SB(ωn). Com-
pute the eigendecomposition of this matrix in each band, and
find the bandwidth noncircularity NB(ωn).
4. Where there is a strong local minimum in NB(ωn) as a
function of ωn, we detect the presence of a sinusoidal compo-
nent.
In this case, we use discrete-time signals and employ sampled
versions of the autocorrelation, autoconvolution, and Fourier
transform.

We explore the above process via simulation in the
discrete-time domain. Let x(k) be defined as

x(k) = cos(2π0.15k − π/6) + 0.25 cos(2π0.25k + π/3)
+0.1 cos(2π0.4k + π/8) + η(k), (19)

where η(k) is a zero-mean Gaussian random process gener-
ated by filtering a zero-mean uncorrelated Gaussian random
process with a digital filter whose system function is

H(z) =
1

1− 1.8 cos(2π0.2)z−1 + 0.64z−2
(20)

The discrete-time power spectrum of η(k) has a peak at ω =
0.2 rad/sample. We generate 100 sequences of x(k) for 1000
samples each, and form ensemble-averaged autocorrelation
and autoconvolution sequences from them, using a Hamming
window of length 200 samples.

Fig. 1 shows the autocorrelation (top) and autoconvolu-
tion (bottom) sequences, respectively. Note that the autocor-
relation sequence has a sharp peak at k = 0 due to the noise
sequence, whereas the autoconvolution sequence does not.

The top of Fig. 2 shows the power spectrum and the ab-
solute value of the panorama, calculated as the fast Fourier
transform of the autocorrelation and autoconvolution se-
quences shown in Fig. 1, respectively, where a normalized
frequency axis f = ω/π is used. The power spectrum shows
three small local peaks at ω/π = {0.3, 0.5, 0.8} correspond-
ing to the digital frequencies of the sinusoids in x(n), as well
as a peak at ω/π = 0.4 due to the Gaussian noise spectrum.
It would be challenging to use the power spectrum alone to
identify both the presence of the sinusoids and their frequen-
cies due to the complicated shape of R(ω). The absolute
value of the panorama |P (ω)| rejects the uncorrelated Gaus-
sian noise component, and the sinusoidal peaks are more
well-defined.

The bottom of Fig. 2 shows the bandwidth noncircularity
NB(ω) computed using the (2 × 2) eigendecomposition of
the complex-valued power spectrum matrix at each frequency
bin. This function lies between zero and one, and the local
minima of this function indicate the presence and frequencies
of sinusoids in the signal under test. The exact position of
these minima depends on the gridding used to compute the
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Fig. 1. Numerical estimates of the autocorrelation (top) and
autoconvolution (bottom) for the discrete-time signals in the
example.

power spectra and may be shifted slightly from the true sinu-
soidal frequencies due to numerical effects.

5. COMPUTING THE AUTOCONVOLUTION AND
PANORAMA

Numerical estimates of the autocorrelation function are of-
ten computed using time averages, making use of an assumed
ergodicity property of the signals under analysis which for
stochastic signals is the assumption that the joint signal p.d.f.
obeys the property pt1,t2(x(t1), x(t2)) = pt1−t2,0(x(t1 −
t2)x(0)). For deterministic signals, employing time averages
to compute the autocorrelation function implies that the exact
phase of the signal is unknown.

It is important to note that, even in situations where a sig-
nal being analyzed is ergodic, time averages cannot be used
in place of ensemble averages to compute its autoconvolution
and/or the panorama. The reason for this limitation is due to
the form of the expectation in the definition of p(τ) in (2). For
stochastic signals, this expectation cannot make use of the er-
godicity property. Thus, ensemble averages are required to
compute the novel quantities described in this paper.

Despite its requirement for the use of ensemble averaging,
the autoconvolution and panorama are expected to be useful
in situations where a precise time reference exists. For digi-
tal communication tasks, this timing information might come
from the physical scenario or through information in a side
communications channel. Other applications where precise
timing information is often available include biology, where
recordings are often taken due to a stimulus injected at a pre-
cise time, and seismology, where shot records are measured
using a precisely-timed acoustic disturbance.
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Fig. 2. Numerical estimates of the power spectrum and
panorama (top) and the bandwidth noncircularity (bottom) for
the discrete-time signals in the example.

6. CONCLUSIONS

In this paper, we have described a useful way to augment
the autocorrelation of a signal. The autoconvolution together
with the autoconvolution provides the information necessary
to identify the deterministic and stochastic components in a
generalized second-order signal analysis. The panorama is
the Fourier transform of the autoconvolution. The panorama
together with the power spectrum provides a way to recognize
deterministic frequency components of a signal buried in ran-
dom noise using a complex-valued power spectrum matrix.
The relationships between the proposed signal representation
and the second-order representations of complex-valued sig-
nals are the subject of current research.
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