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ABSTRACT
This paper presents a novel design of content fingerprints

based on maximization of the mutual information across the
distortion channel. We use the information bottleneck method
to optimize the filters and quantizers that generate these fin-
gerprints. A greedy optimization scheme is used to select fil-
ters from a dictionary and allocate fingerprint bits. We test
the performance of this method for audio fingerprinting and
show substantial improvements over existing learning based
fingerprints.

Index Terms— Audio fingerprinting, Information bottle-
neck, Information maximization, Content Identification

1. INTRODUCTION

Organization, matching and retrieval of multimedia content
from internet scale databases pose significant challenges.
With increasing popularity of content sharing and social
networking websites, there is a data deluge where new multi-
media content is created and existing contents are duplicated
by users. It is desirable to have a scalable identification en-
gine for efficient data organization and management. Content
Identification (ID) has other well known applications such
as copyright enforcement for sharing sites such as Youtube,
content based searching such as Google Image search, and
popular smartphone applications such as Shazam and Sound-
hound.

Fingerprint based methods for Content ID is an active area
of research. Good fingerprints should have be compact to
keep the database search complexity manageable while be-
ing highly distinguishable and robust to distortions introduced
during operations such as transcoding and processing.

A variety of algorithms for content fingerprinting are
readily available in literature. Examples of audio fingerprint-
ing based on signal processing primitives include the Philips
audio fingerprinting scheme [1] and Google’s Waveprint [2].
Another body of research relies on machine learning methods
to identify perceptually relevant features from a data dictio-
nary [3]. Examples include, Symmetric Pairwise Boosting
[4], and learning hash codes [5].
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A formal approach to fingerprinting is presented in [6]
where an information-theoretic relationship is derived be-
tween database size, hash length, and robustness that holds
for any reliable, fingerprint-based, content ID system, under
some structural assumptions on the fingerprinting code and
a statistical assumption on the signals of interest. Our pre-
vious work in this area focuses on exploiting the underlying
statistical models for fingerprints [7], in [8] we established a
link between the information and learning theoretic aspects
of Content ID. The problem of designing efficient quantizers
for Content ID is also examined in [9, Ch. 2]. There finger-
print mutual information is used as the design criterion for
quantizer design on Gaussian data with 4 quantizer levels.
In contrast, our proposed scheme may be thought of as a
practical application of the concepts of [6]. We use an in-
formation bottleneck scheme [13] for quantizer design which
optimizes thresholds at multiple bit levels using 2-D joint
kernel density estimates of actual filter outputs. We rely on
estimates of mutual information of the fingerprint bits across
common content distortion channels to identify optimal fea-
tures and for the corresponding bit-allocations to generate the
fingerprint.

The paper is organized as follows. Section 2 formalizes
the content ID problem. Section 3 develops the informa-
tion maximization framework and simplifies it into a tractable
form. Section 4 presents the information bottleneck proce-
dure and a greedy optimization for feature selection and bit-
allocation. Section 5 employs this technique to audio finger-
printing and presents results for fingerprint matching perfor-
mance. We conclude with a brief discussion in Section 6.

2. STATEMENT OF CONTENT ID

A content database is defined as a collection of M elements
(content items) x(m) ∈ XN , m = 1, 2, · · · ,M , each
of which is a sequence of N frames {x1(m), x2(m), · · · ,
xN (m)}. Here X is the set of possible values of a frame. A
frame could be a short video segment, a short sequence of
image blocks, or a short audio segment. Content frames may
overlap spatially, temporally, or both. In audio fingerprinting,
overlapping time windows that are 2 sec long and start every
185 ms; with overlap of 15/16 are used as frames in [4] . A

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3837



3-minute second song is represented by N = 1000 frames. It
is desired that the audio be identifiable from a short segment,
say 5 sec long, corresponding to L = 16 frames. This is
called the granularity of the audio ID system [4]. Typically
L� N .

The problem is to determine whether a given probe con-
sisting of L frames, y ∈ XL, is related to some element
of the database, and if so, identify which one. To this end,
an algorithm ψ(·) must be designed, returning the decision
ψ(y) ∈ {0, 1, 2, · · · ,M} where ψ(y) = 0 indicates that y is
unrelated to any of the database elements.

In this paper, we consider a general class of fingerprints
for content ID generated by frame-wise processing. The
codes of [1, 4, 11], among others, fall in this category. Each
of the M database elements x ∈ XN is fingerprinted using a
mapping Φ : X → F such that the fingerprint x̃ ∈ FN with
frame-wise components x̃(i) = Φ(xi), 1 ≤ i ≤ N ; a probe y
is encoded into a probe fingerprint ỹ ∈ FL with components
ỹ(i) = Φ(yi), 1 ≤ i ≤ L; the decoder returns m̂ = ψ(ỹ)
using a decoding function ψ : FL → {0, 1, · · · ,M}.

Additional structure is imposed on the fingerprinting
function Φ. The mapping Φ : X → F is obtained
by applying a set of K filters (optimized from a dictio-
nary) to each frame and quantizing the kth filter output
to 2bk levels such that

∑
k bk = B . Hence F takes the

form F =
∏K
k=1 X̃k with X̃k = {q1, q2, ..., q2bk }. Thus

the sub-fingerprint for the ith frame is given by the vector
x̃(i) = (x̃

(i)
1 , x̃

(i)
2 , ..., x̃

(i)
K ). The entire fingerprint takes the

form of an array x̃ = {x̃(i)
k , 1 ≤ i ≤ N, 1 ≤ k ≤ K}. The

decoding function is based on a sliding window estimation of
the minimum Hamming distance between the arrays ỹ and x̃.

3. FINGERPRINT INFORMATION MAXIMIZATION

For a pair (x,y) of related content elements, i.e. the probe y
is obtained by passing x through a degradation channel. For
the sake of simplicity, consider that the probe and database
elements are perfectly aligned frame by frame. Assume each
frame X is a random vector drawn from a distribution PX
over X . Similarly, Y denotes the degraded frame drawn from
a conditional distribution PY |X overX . Assume that the pairs
of frames (X(i), Y (i)) are iid.

Let X̃ = (X̃1, X̃2, ..., X̃K) denote a vector of random
variables generated by applying to X a set of K filters Φ
drawn from a dictionary D, and quantizing the output of each
filter φk to 2bk levels. The bit allocation satisfies

∑
k bk = B,

where B is the total fingerprint bit budget. Let Ỹ denote the
corresponding random vector obtained by applying the same
set of filters to content Y . We seek to maximize the mutual
information I(X̃; Ỹ) between these fingerprint vectors. The
problem can be stated as

(Φ∗,~b∗) = arg max
Φ⊂D,

∑
bk=B

I(X̃; Ỹ) (1)

The solution to this problem yields the set of filters from
the dictionary to be used and the optimal bit allocation. Un-
fortunately, this problem is combinatorial in nature and an
approximate solution is needed. We simplify the problem by
making Markov type approximations resulting in simplified
conditional entropies

H(X̃1|Ỹ1Ỹ2) ≈ H(X̃1|Ỹ1) (2)
H(X̃2|Ỹ2Ỹ1X̃1) ≈ H(X̃2|Ỹ2) (3)

This reflects the typical property that filter outputs of origi-
nal and degraded frames from the same filter are more closely
related than across filters. This approximation is validated
by estimation of these conditional entropies from the train-
ing data. We plot the histogram of ratios H(X̃1|Ỹ1Ỹ2)

H(X̃1|Ỹ1)
and

H(X̃2|Ỹ2Ỹ1X̃1)

H(X̃2|Ỹ2)
for pairs of filters selected by the algorithm.

It is seen from the histograms in Fig. 1 that with high proba-
bility, the approximation is accurate to 5% of the actual. The
following analysis by considers X̃ and Ỹ for just two filters
and approximates the mutual information as follows.

I(X̃; Ỹ) = I(X̃1X̃2; Ỹ1Ỹ2)

= H(X̃1X̃2)−H(X̃1X̃2|Ỹ1Ỹ2)

= H(X̃1) +H(X̃2)− I(X̃1; X̃2)

−H(X̃1|Ỹ1Ỹ2)−H(X̃2|Ỹ2Ỹ1X̃1)

≈ H(X̃1) +H(X̃2)− I(X̃1; X̃2)

−H(X̃1|Ỹ1)−H(X̃2|Ỹ2)

= I(X̃1; Ỹ1) + I(X̃2; Ỹ2)− I(X̃1; X̃2)

This approximation is shown in Fig. 2. The shaded re-
gions of intersection are approximated to zero.

Extending the approximation to K filters, and charac-
terizing higher order common information [12] terms like
I(X̃1; X̃2; X̃3) using a tuning parameter β we have the fol-
lowing approximation to the optimization in (1):

(Φ∗,~b∗) = arg max
Φ⊂D,

∑
bk=B

 ∑
k:φk∈Φ

I(X̃k; Ỹk)

−β
∑

k 6=l:φk,l∈Φ

I(X̃k; X̃l)

 .
(4)

Typically, β ∈ [0, 1) depending on the actual values of
the higher order common information terms. When β = 0,
the algorithm neglects the dependencies between responses
across filters.

4. ITERATIVE OPTIMIZATION METHOD

In order to solve the optimization problem in (4), we need
to estimate the mutual information terms I(X̃k; Ỹk) and
I(X̃k; X̃l) for the filters in the dictionary D. The goal is to
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Fig. 1: Histograms showing the accuracy of conditional en-
tropy approximations (2)and (3).
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Fig. 2: Fingerprint Vectors Mutual Information Venn Dia-
gram

identify the filters that retain high individual mutual infor-
mation as represented by the I(X̃k; Ỹk) terms while simul-
taneously accounting for the mutual information loss due to
I(X̃k; X̃l). The training dataset is used to estimate the two
dimensional joint statistics of the filter outputs. Bandwidth
tuned 2 dimensional kernel density estimation is performed
on a finely quantized grid using real valued filter outputs.

The optimization problem is solved in three steps. Step
1, solves the problem of optimal quantization of filter outputs
given an arbitrary number of quantization levels. This is done
using a variation to the information bottleneck method [13].
Following this, Step 2 performs a greedy filter selection pro-
cess based on mutual information estimates obtained in Step
1. Step 3 allocates fingerprint bits to the filters selected in
Step 2 using estimates of I(X̃k, Ỹk) and I(X̃k, Ỹl) and quan-
tization thresholds obtained in Step 1. Thus, sub-fingerprints
are extracted for each content frame using the selected filters
and their quantization thresholds.
1) The Information Bottleneck Method: The information
bottleneck method [13] provides an scheme to quantize a
scalar random variable X into X̃ such that its relevance to
a random variable Y , given by I(X̃;Y ), is maximized. We
have a slight variation of this formulation as both Xk and Yk,
need to be quantized using an identical quantization scheme
such that the mutual information I(X̃k; Ỹk) is maximized.
We use the agglomerative clustering method to generate a
hard quantization scheme as shown in [14]. The only input to
this clustering algorithm is the estimate of the 2-dimensional
joint probability density p(xk, yk), outputs of φk on a finely
quantized grid. The method repeatedly cycles through pairs
of adjacent quantization bins and collapses two levels that
lead to least information loss. The output of this algorithm
provides the estimate of I(X̃k, Ỹk) for every possible num-
ber of quantization levels. The algorithm generates optimal
quantizer thresholds under the hard quantization assumption
[14].
2) Filter support set selection: The filters are selected greed-
ily from the dictionary assuming a fixed number of quantiza-
tion bits per filter bk = 3, ∀k in this step. After each iteration,
the entire dictionary of candidate filters is examined for two
terms, the mutual information I(X̃k; Ỹk) at 3 bits quantiza-
tion and the interaction of φk with previously selected filters
within the support set. At iteration T , this second term is
given by

∑T−1
t=1 I(X̃k, X̃φ∗

t
) calculated using the joint statis-

tics generated from the training dataset and quantizer thresh-
olds obtained in Step 1. The selection of filter k at iteration T
is given by

φ∗T = arg max
φk∈D

[
I(X̃k; Ỹk)− β

T−1∑
t=1

I(X̃k, X̃φ∗
t
)

]
. (5)

The process is repeated until K filters are selected as support
set for fingerprint generation.
3) Bit allocation: Bits are allocated to each of the K filters
selected in Step 2. Initially one bit per filter is pre-allocated.
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Then at each iteration, an additional bit is allocated to the
filter that most increases the cost function of (1). Quantization
thresholds generated using the information bottleneck scheme
in Step 1 are reused to estimate mutual information terms in
the cost as a function of number of bits. This process iterates
until the entire bit budget B is allocated. In general, we allow
the maximum number of bits available per filter to exceed the
average bit budget in order to leverage filters with superior
performance.

5. EXPERIMENTAL RESULTS

To validate the performance of the proposed algorithm, we
build a fingerprinting scheme for audio content and compare
the matching characteristics on a large database of audio con-
tent. Our audio database consists of M = 1000 music files,
each duplicated under 5 different perceptual distortion chan-
nels: Bandpass filtering, 20 percent echo addition, Equaliza-
tion, Flanging, and Pitch changes. For the training and test-
ing purposes, the database of total 7 million frames of 376
ms each is split into 2 sets of 105 disjoint 10 frame, 2.5 sec-
ond snippets. All the statistical modelling to estimate the joint
densities are performed on the training set.

Audio spectrograms provide an adequate representation
for these audio snippets. A short time Fourier transform
(STFT) is performed on each snippet with a temporal window
of 376 ms corresponding to the frame width. For added ro-
bustness, we capture the Spectral Sub-band Centroids (SSC)
using 16 bins on the Bark scale as described in [4]. Therefore,
each audio snippet is transformed to a 16 × 10 real valued
SSC image.

The audio fingerprints are built from a dictionary of Viola-
Jones type filters [3]. These filters capture perceptual aspects
of audio such as spatio-temporal shifts in energy. The dic-
tionary consists of 3808 filters constructed across 5 types of
filters in various sizes and shifts of application to the SSC.

We apply our fingerprinting algorithm with K = 32 fil-
ters and a total bit budget of B = 64 bits. For the estimation
of joint densities to feed to the agglomerative clustering, we
use 2 dimensional kernel density estimation [15] on training
data to obtain joint pdf values on a 128 × 128 grid spanning
the range of outputs for each filter. The optimization using
the information bottleneck method takes about 90 minutes on
a 2.2 Ghz Core i7 processor using an unoptimized MATLAB
implementation. We build the fingerprints using different val-
ues of the tuning parameter β = 0, 0.1, 0.5, 1.0.

For matching fingerprints, we use a simple Hamming
distance based thresholding to declare a pair of snippets as
a match or a non-match using an exhaustive search over
the database. Alternatively, we can use Euclidean distance
with marginal performance improvement but prefer Ham-
ming distance due its reduced storage and ease of matching
binary fingerprints using bitwise operations. The matching
performance is evaluated on the testing database using 105

song snippets to plot the ROC curve by varying the matching
threshold. We compare our results to a a fingerprint scheme
built Symmetric Pairwise Boosting (SPB) in [4] and 2-bit
information maximizing quantization (2b-IM) in [9]. For
fairness of comparison, both SPB and 2b-IM use 32 boosted
filters with 2 bits allocated per filter. Qualitatively, the filters
selected by both SPB and our algorithm are ones with a long
temporal support and short support in the frequency direction.
The improved performance from our method is due to better
quantization and selection of filters which are nearly indepen-
dent and don’t share significant time-frequency support with
each other. The bit allocation in Step 3 results in 3,8,7,14
filters with 4,3,2 and 1 bit respectively when β = 0.1. We
show the efficacy of our bit allocation step by comparing
performance with a uniform 2-bit allocation per filter. The re-
sults are shown in Fig. 3. We observe that ROC performance
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Fig. 3: ROC curves for matching audio fingerprints across a
distortion channel

varies depends on β, since β trades off the two different as-
pects of the selected filters. It is seen that when β = 0.5, a
heavy penalty is levied on fingerprint correlation which leads
to a suboptimal choice of filters and to inferior performance.
From our experiments, it is seen that the best performance is
achieved when β = 0.1.

6. SUMMARY

We have presented a method for designing fingerprints that
maximizes a mutual information metric. The problem is high
dimensional, so we have proposed a greedy optimization
method that relies on the information bottleneck (IB) method.
Our algorithm selects filters from a dictionary and optimizes
bit allocation to these filters. We have demonstrated the valid-
ity of this technique by testing it for audio fingerprinting. Our
method outperforms the benchmark learning based method
of [4].
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