
Fast and Accurate Nearest Neighbor Search in the Manifolds of Symmetric Positive Definite Matrices

Ligang Zheng1, Guoping Qiu2 ,Jiwu Huang3 and Jiang Duan4

1 School of Computer Science, Guangzhou University, Guangzhou 510006, China,
2 School of Computer Science, The University of Nottingham, Nottingham NG8 1BB, UK

3 College of Information Engineering, Shenzhen University, Shenzhen 518060，China
4Southwestern University of Finance and Economics, Chengdu, China

ABSTRACT

In this paper, we present a fast and accurate Nearest
Neighbor (NN) search method in the Riemannian manifolds
formed by a kind of structured data - symmetric positive
definite (SPD) matrices. We use an ensemble of vocabulary
trees based on hierarchical k-means clustering and query
these trees to find the NN candidates in sub-linear time. As
generating these vocabulary trees with widely used affine-
invariant Riemannian metric (AIRM) will be very time-
demanding, we propose to use the second-order
approximation to AIRM (SOA-AIRM). We evaluate the
proposed NN search algorithm in the application scenario of
near-duplicate image detection in a large database.
Experimental results demonstrate that the proposed method
significantly outperforms state of the art techniques in terms
of both accuracy and speed.

Index Terms—near duplicate image detection, nearest
neighbor search, Riemannian manifold, vocabulary forest.

1. INTRODUCTION
Recent times have seen a steep rise of data which are

encoded symmetric positive definite (SPD) matrices.
Covariance, correlation and kernel matrices are typical
examples of SPD matrices. Some successful applications in
computer vision related areas that make use of SPD matrices
include, diffusion-tensor imaging [18], near-duplicate
image/video detection [1, 17], object tracking [20], activity
recognition [13] and many others [2, 5].

Generally speaking, there are two major issues affecting
the application of SPD matrices to large-scale datasets. First,
they lie in a Riemannian manifold and it is time consuming
to compute the similarities (distances) between data points.
Unlike in vector space where distances between data points
can be measured by straight line metrics such as Lp-norm, in
the Riemannian manifold, the distance between data points
must be calculated following the Riemannian curvature
which is computationally very expensive. Researchers have
made much effort to tackle the problem of similarity
computation for SPD matrices. The simple and naïve
method is to vectorize SPD matrices and then use Euclidean
distance. However, it is an inferior choice because it ignores
the manifold structure. A more suitable choice is to use
geodesic distance - affine invariant Riemannian metric
(AIRM). AIRM has theoretically excellent properties but

lead to complex algorithms as it involves intensive use of
matrix inverse, square roots and logarithms [5] or
generalized eigenvalues [6].

In [2], the authors proposed to use matrix logarithm to
transform manifold into vector space and then use Euclidean
norm as a metric. However, the matrix logarithm
transformation is only approximate rather than exact,
because in general there is no such a mapping that globally
preserves the distance between the points on the manifold.
As a result, when used for nearest neighbor (NN) search,
log-Euclidean Riemannian metric (LERM) is not as accurate
as widely used AIRM. In [3], the authors proposed Jensen-
Bregman LogDet Divergence (JBLD) which improves
Bregman Divergence as an efficient similarity measure.
JBLD is fast to compute but does not satisfy the triangle
inequality. Another alternative is the symmetrized KL-
Divergence Measure (KLDM) [4], however in some cases
its accuracy is poor [3].

Secondly, there are no effective fast NN search
algorithms in the Riemannian manifold of SPD matrices.
Researchers have attempted to modify existing fast NN
search algorithms in vector space which cannot be directly
applied to non-vector spaces for Riemannian manifolds.
Zheng et al [21] proposed a coarse-to-fine strategy for
efficient near-duplicate image detection. The searching
efficiency will be largely improved when hashing
algorithms are used in the coarse stage. However, there
isn’t a mechanism to decide how many candidates should be
returned in the coarse stage. Chaudhry and Ivanov [13]
approximated the manifold with a set of tangent hyper-
planes first and then projected the data onto the tangent
space using logarithmic mapping. As the tangent space is
Euclidean, fast NN search algorithm such as hashing [7] can
be used in this space. A similar method was chosen by
Turaga and Chellappa [8] for computer vision applications.
However, in a manifold, only area around the pole locally
resembles Euclidean space of a specific dimension. As a
result, there will be large projection errors for points that are
far away from the poles [8, 11], causing major inaccuracies
in NN search.

On the other hand, authors in [3] adopted Bregman Ball
Tree (BBT) for fast NN search using JBLD as dissimilarity
function. The BBT was built through top-down bi-
partitioning the input data space by recursively applying

This work is supported in part by 973 Program (2011CB302204), National

Science & Technology Pillar Program (No:2012BAK16B06), NSFC

(U1135001, 61332012, 61300205), 2012jq0017.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3832

JBLD-K-Means algorithm [3]. The construction of BBT is
somewhat similar to that of vocabulary tree [10] using
hierarchical k-means (in BBT algorithm, k = 2). Unlike L2-
norm K-Means in the Euclidean space which optimizing a
quadratic cost function and is guaranteed to converge to a
local minimum, the JBLD-K-means algorithm [3] has no
guarantee of convergence. Even if the JBLD-K-Means
based BBT converges, it still inherits the two well-known
problems of K-Means [12]. One is that the clustering is
sensitive the initial cluster centers and the other is that there
is no systematic methods to determining the suitable value
of k (the number of clusters).

In this paper, we present a novel fast and accurate NN
search technique for SPD matrices and make two original
contributions. First, we propose a second-order
approximation to AIRM under the framework of Baker-
Campbell-Hausdorff [14]. We show that LERM is just the
first order approximation of AIRM and the Second Order
Approximation of AIRM (SOA-AIRM) has similar
computational complexity as LERM but is more accurate.
Furthermore, we show that SOA-AIRM has competitive
accuracies as the much more complex AIRM for NN search
in the manifold of SPD matrices. Second, we introduced an
ensemble of random vocabulary forest1 as indexing structure
for fast NN search. In the construction of vocabulary forest,
we use two different strategies. The first built the forest
with varied structure constituent trees while the other built
the forest with the same structure for each component trees.
Both methods have a better accuracy and speed performance
than the state of the art NN search methods for SPD
matrices.

Our new method is a generic one and can be applied to
any applications that use SPD matrices as feature
representations and there is a need to search for nearest
neighbors of data points which include many applications in
information retrieval, pattern recognition, machine learning
and computer vision. In experimental section, we use
content based near-duplicate image detection as an
illustrative application example to make our contribution
specific and concrete.

2. FAST NEAREST NEIGHBOUR SEARCH USING
HIERACHICAL VOCABULARY TREES

2.1 Vocabulary Tree for Nearest Neighbor Search

To avoid an expensive linear search through database,
tree-based data structures are widely used to improve the
efficiency of nearest neighbor search in many applications.
As a specific kind of tree-based structures, vocabulary tree
has been widely used in large scale databases for nearest
neighbor search [9, 10]. The vocabulary tree defines a
hierarchical quantization of the feature space where the
nodes are the centroids determined by hierarchical k-means
clustering of feature descriptors.

In the online phase, each descriptor is simply propagated
down the tree by comparing the descriptor to the k candidate
cluster centers at each level and choosing the closest one.
This can efficiently find a query’s nearest neighbor in sub-
linear time.

Currently, most of the existing hierarchical k-means
clustering are based on Lp norms (e.g., vocabulary tree [10]).
The problem is that existing hierarchical k-means clustering
can’t be directly applied to Riemannian manifolds which
employed geodesic distance instead of Lp norms.

 Clustering in Riemannian manifolds is not easy, which
can be attributed to two reasons. The first is the
aforementioned time-demanding similarity computation
which will be a major issue when many iterations are
needed in clustering. The second lies in the fact that, unlike
arithmetical mean in Euclidean space, there is not a closed
form solution for Karcher mean [15] in manifolds. For these
reasons, it will be very time consuming to train a vocabulary
tree for Riemannian manifolds of SPD matrices using the
present methods.

2.2 Riemannian Metric: AIRM and Its Approximation

We denote S(n)={S∈Rdxd, ST=S}, the space of all n×n
symmetric matrices and denote P(n)={P(n)∈S(n), P>0}the
set of all n×n symmetric positive definite (SPD) matrices.
The symmetric, positive definite matrices in P(n) forms a
Riemannian manifold. The space is not closed under
manipulation with negative scalars. According to [5], an
affine-invariant Riemannian metric (AIRM) is given by,

,ܺ)ߜ																						 ܻ) 	= ቛlog	(XିభమYXିభమ)ቛ୊ 																			(1)
where log(X) is the matrix logarithm which converts the
manifold into vector space. Furthermore, (1) is equivalent to

,ܺ)ߜ																		 ܻ) 	= ඩ෍݈݊ଶߣ௞(ܺ, ܻ)ௗ
௞ୀଵ 																					(2)

																																		= ‖log	(YXିଵ)‖୊																												(3)	
where λ (X, Y) is generalized eigenvalues of X and Y. This
metric is perhaps the most widely used distance measure for
SPD matrices. This metric is theoretically elegant but
involves matrix inverse and matrix logarithm or generalized
eigenvalues thus it is time-consuming. Using the Baker-
Campbell-Hausdorff for non-commutative Lie groups [14],
it has the following approximation,
,ܺ)ߜ	 ܻ) = ‖log(YXିଵ)‖୊	 = ‖log(exp	(log(Y)) ∗ exp(log(Xିଵ)))‖୊
 = ‖log(exp	(log(Y)) ∗ exp(−log(X))))‖୊ 																	= ቛlog(Y) − log(X) + ଵଶ ൫log(ܺ) ∗ (log(ܻ) −																		log(ܻ) ∗ log(ܺ)) + ܱ(‖log(Y) ∗ log(X)‖ଷ)൯ቛ୊ 														≈ ቛlog(Y) − log(X) + ଵଶ (log(ܺ) ∗ log(ܻ) −																						log(ܻ) ∗ 		log(ܺ))ቛ୊ (4)

1 Vocabulary forest and vocabulary trees are usually an ensemble of

vocabulary trees, while vocabulary tree is a single tree.

3833

It is noted that, as X and Y are SPD matrices, according to
the matrix theory, log(X) and log(Y) are symmetric matrices.
Algebra system (S(n), *) is a unchangeable group. So, log(ܺ) ∗ log(ܻ) − log(ܻ) ∗ log(X) ് ૙														(5)
Where 0 is a matrix with each entry is zero.

The popular log-Euclidean Riemannian metric (LERM)
[2] that are often used in the literature to transform manifold
to vector space is defined as follows, 					ߜ௅ாோெ(ܺ, ܻ) 		= ‖log(ܺ) − log	(ܻ)‖ி																			(6)

Comparing (4) and (6), it is easily seen that LERM of (6)
is a first order approximation to AIRM while (4) is a second
order approximation to AIRM. LERM is easy to compute as
it can be easily tackled in ordinary Euclidean space.
However, when used for NN search it is not as accurate as
AIRM because in general there is no such mapping that
globally preserves the distance between the points on the
manifold [18]. Generally speaking, when used for NN
search, the second-order approximation (SOA-AIRM) can
be much more accurate than first-order approximation
(LERM). ROC curves in Figure 1 demonstrate this fact
where it is seen that SOA-AIRM is much more accurate
than LERM and is almost as accurate as AIRM. SOA-AIRM
shares the same good merits with LERM as it can also be
tackled in vectorial logarithm space.

2.3 Clustering using SOA-AIRM

Clustering is a key component in building vocabulary tree
using hierarchical k-means. It is very time-demanding to
train a vocabulary tree in Riemannian space because of
complicated geometry and a lot of iterations involved in k-
means. As stated in subsection 2.2, when using SOA-AIRM,
the clustering can be done in vector space log(X), which
will be more efficient. In this paper, we choose a specific
neural network training algorithm, namely the frequency
sensitive competitive learning (FSCL) [12] algorithm.
FSCL is reported to be very efficient clustering algorithm
that is insensitive to initial random cluster centroids, thus
very suitable for hierarchical k-means clustering for a large
database. The FSCL method for Riemannian manifold can
be briefly described as follows:
1. Preprocessing all the data using matrix logarithm to

transform the data into vector space.
2. Conduct k-means using FSCL in the vector space.
3. Transform the each centroid into Riemannian manifold

using matrix exponential.
In our experiments, building a vocabulary tree using SOA-
AIRM costs on average 2% of the time when using AIRM.

2.4 Building Vocabulary Trees and NN Search

The idea of building vocabulary trees is burrowed from
random forests [21]. Vocabulary forest (trees) is an
ensemble of single vocabulary tree. The vocabulary tree is
built by hierarchical k-means. For n points in the dataset, it
will take O(n logk n) time to build a k-ary tree. So the time

complexity for building N vocabulary trees is N×O(n logk
n). We create two sets of vocabulary trees using hierarchical
k-means with fixed k and different k respectively. We
stopped partitioning the nodes when the number of points
goes below a threshold. Given a query point, it compares the
node along the tree from the root. Once it reaches to the
leaves of all the vocabulary trees, we combine all samples
falling onto these leaves to do an exhaustive search. As the
average number of samples in each leaf is small, it is very
efficient to find the nearest neighbors.

Figure 1: the ROC curve for LERM, AIRM and SOA-AIRM of
near-duplicate image detection through brute-force search. The
experiment setups are described in subsection 4.1 and 4.2.

3. EXPERIMENT AND RESULT ANALYSIS

In this part, we give our experiment of using vocabulary
trees for near-duplicate image detection in Riemannian
manifolds.
3.1 Experiment Setup

The evaluation is performed on datasets: 1)INRIA
Copydays dataset [16] as testing dataset; 2)25,000 Flickr
images and another 19,634 images (totally 44,634 images)
as distracting image dataset2. We create totally 46 copies for
each testing image. For each image, a SCOV3 [1] is
extracted to represent the image. The receiver operating
characteristic (ROC) curve and mean average precision
(mAP) is employed to evaluate the overall performance for
each algorithm.
3.2 Experimental Results and Analysis

3.2.1 ROC Performance for Different NN Searching

Methods
 In our experiments, we give the ROC results for brute-
force NN search using LERM and AIRM, single vocabulary
tree using SOA-AIRM, multiple vocabulary trees using
SOA-AIRM (10 trees) and LERM (10 trees), as well as the
method proposed in [13].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FP

T
P

ROC for different similarity function

AIRM
LERM
SOA-AIRM

2 In order to get a comprehensive performance evaluation of our algorithm, besides the

challenges mentioned in [16], we extend the transformation types, such as additive noise (salt

& pepper, Gaussian), flipping, rotate, blur, illumination change, combination attacks, etc.

3834

From the results shown in Figure 2, we can see brute-
force NN search using ARIM clearly gives the best ROC
performance. The proposed method (multiple vocabulary
trees) can achieve nearly the same ROC performance as
exhaustive brute force search using AIRM. The performance
of using SOA-AIRM to build vocabulary forest is better
than that of using LERM, which demonstrate that SOA-
AIRM has a better accuracy than LERM. We also compare
multiple vocabulary trees with the algorithm proposed in [13]
and [21], this method also achieves a significant
improvement in ROC performance.

Figure 2. ROC curves for different methods. [13]-50 is the method
used in [13] and the number of poles is 50. LERM and AIRM are
the brute-force search results. LERM (10 trees) is the result of 10
trees using LERM to build vocabulary forest. SOA-AIRM (single)
is the result of using one tree while SOA-AIRM (10 trees) is the
result of using 10 trees each with a different k. Both SOA-AIRM
(single) and SOA-AIRM (10 trees) used SOA-AIRM to build
vocabulary forest. CTF is coarse-to-fine strategy proposed in [21].

3.2.2 Time Efficiency Evaluation

 Table 1: speed and mAP for different methods
methods Time per query mAP
AIRM 17s 0.7654
LERM 16.5s 0.6841

10 trees(k not fixed) 0.7s 0.7509
[13]-50 0.71s 0.5992

AIRM means the brute force search using AIRM. LERM means
the brute force search using LERM. [13]-50 means using the
method in [13] and the number of poles is 50. 10 trees (k not fixed)
means the vocabulary forest built using 10 vocabulary trees with
different k, details refer to subsection 4.3.3.

 Table 1 shows the time efficiency for the proposed
methods (multiple vocabulary trees), the brute-force method

using AIRM and LERM, and the method proposed in [13].
From table 1, we can see that our method is as fast as the
method in [13] which is over 20 times faster than using
brute force searching in a 50 k image dataset. However, it is
also seen that the accuracy of our method is over 22% better
than the method of [13].
3.2.3 Comparison of Different Vocabulary Forest Building

Strategy

 In our experiments, we compare the time efficiency and
mean average precision (mAP) of different strategies to
choose k in hierarchical clustering. Specifically, we build
two sets of vocabulary forests. One set is built with the same
k, which means that each component tree in the forest is k-
ary (k fixed). The other set of forest is built with different k,
which means that the component trees in the forest are 2-ary,
3-ary,…, and 11-ary respectively.

From Table 2, we can see that the proposed methods
(both fixed k and different k) outperform the method in [13].
What is more, creating the vocabulary forest using the same
k may result in different results for different k. Because,
there is no systematic method existed for choosing the best k
– this is a well-known problem of k-means. On the other
hand, using hierarchical k-means with a set of different k (k
= 2, 3,…,K) to create a vocabulary forest can successfully
address this issue.

Table 2: the comparison of vocabulary forest.
methods Time/query mAP

10 trees(K not fixed) 0.7 0.7509
10 trees(K=5) 0.7 0.7289
10 trees(K=6) 0.7 0.7278
10 trees(K=7) 0.7 0.7380
10 trees(K=8) 0.7 0.6814
10 trees(K=9) 0.7 0.7367

10 trees(K=10) 0.7 0.7376
Each forest contains 10 vocabulary component trees. The
vocabulary forest in the first row is created using hierarchical k-
means with k=2, 3, 4, 5, 6, 7, 8, 9, 10, 11. The others are created
with the same k as listed.

4. CONCLUSION
In this paper, we propose to use vocabulary forest (an
ensemble of vocabulary trees) as our indexing structure for
fast and accurate NN search in Riemannian manifolds. In
order to efficiently train the vocabulary trees in Riemannian
manifolds, we propose to use the second order
approximation of AIRM (SOA-AIRM) as similarity
measure for SPD matrices. This approximation can
substantially reduce the training time while maintaining the
NN search accuracy. We also evaluated the different
strategies to construct the vocabulary trees and found that by
varying the k in the component trees of the forest can
achieve robust results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ROC

FP

T
P

SOA-AIRM(single)
[13]-50

AIRM

SOA-AIRM(10trees)

LERM
CTF

3SCOV is a covariance matrix (SPD matrix. More information

please refers to [1].

3835

5. REFERENCES
[1] L. G. Zheng, G. P. Qiu, J. W. Huang and H. Fu, “Salient

Covariance for Near Duplicate Image and Video Detection,”
In Proceedings of International Conference on Image
Processing, pp.2585-2588, 2011.

[2] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Fast and
simple calculus on tensors in the log-Euclidean framework,”
Medical Image Computing and Computer-Assisted
Intervention , pp. 115-122, 2005

[3] A. Chedian, S. Sra, A. Banerjee and N. Papanikolopoulos,
“Efficient similarity search for Covariance matrices via the
Jensen-Bregman LogDet Divergence,” 2011 International
Conference on Computer Vision, pp.2399-2406 2011

[4] M. Moakher, and P. Batchelor, “Symmetric positive-definite
matrices: From Geometry to applications and visualization,”
Springer Berlin Heidelberg, Chapter 17, 2006

[5] X. Pennec, P. Fillard, and N. Ayache,”A Riemannian
Framework for Tensor Computing,” International Journal of
Computer Vision, Volume 66 Issue 1, January 2006.

[6] W. Förstner, B. Moonen, F. Gdp and C. F. Gauss, “A Metric
for Covariance Matrices,” Technical report, Dept. of Geodesy
and Geoinformatics, Stuttgart University (1999)

[7] Piotr Indyk, Rajeev Motwani, “Approximate Nearest
Neighbors: Towards Removing the Curse of Dimensionality,”
In Proceedings of the thirtieth annual ACM symposium on
Theory of computing (1998), pp.604-613.

[8] P. Turaga and R. Chellappa,”Nearest-neighbor search
algorithms on non-Euclidean manifolds for computer vision
applications ,” Proceedings of the Seventh Indian Conference
on Computer Vision, Graphics and Image Processing, ISBN:
978-1-4503-0060-5, 2010

[9] D. Nister and H. Stewenius, “Scalable Recognition with a
Vocabulary Tree,” International conference on Computer
Vision and Pattern Recognition, pp. 2161- 2168, 2006

[10] T. Yeh, J. Lee and T. Darrell, “Adaptive Vocabulary Forests
for Dynamic Indexing and Category Learning,” IEEE 11th
International Conference on Computer Vision, pp.1-8, 2007

[11] J. Sivic and A. Zisserman. “Video Google: A text retrieval
approach to object matching in videos,” 2003 International
Conference on Computer Vision, pp.1470-1477, 2003.

[12] Stanley C. Ahalt , Ashok K. Krishnamurthy, “Competitive
learning algorithms for vector quantization,” Neural
Networks, Volume 3, pp. 277-290, 1990

[13] R. Chaudhry and Y. Ivanov, “Fast Approximate Nearest
Neighbor Methods for Non-Euclidean Manifolds with
Applications to Human Activity Analysis in Videos,” 2010
European Conference on Computer Vision, pp.735-748,
2010

[14] Roger Godement, “Introduction a la theorie des groupes de
Lie,” Springer (November 2003)

[15] Xavier Pennec,” Probabilities and Statistics on Riemannian
Manifolds: A Geometric Approach,” In IEEE Workshop on
Nonlinear Signal and Image Processing, pp: 194-198.2004

[16] M. Douze, H. Jegou, H. Sandhawalia, L. Amsaleg and C.
Schmid, “Evaluation of Gist Descriptors for Web-scale
Image Search,” ACM CIVR, pp.19.1-19.8, 2009.

[17] L. G. Zheng, G. P. Qiu, J. W. Huang and Y Lei, “Near-
duplicate Image Detection in Visually Salient Riemannian
Space,” In IEEE Transaction on Information Forensics and
Security, 7(5): 1578-1593, (2012)

[18] P. Thomas Fletcher and Sarang Joshi, “ Riemannian Geometry
for the Statistical Analysis of Diffusion Tensor Data,” Signal
Processing, vol.87,pp.250-260, 2007

[19] Weiming Hu and Xi Li and Wenhan Luo and Xiaoqin Zhang
and Stephen J. Maybank and Zhongfei Zhang, “Single and
Multiple Object Tracking Using Log-Euclidean Riemannian
Subspace and Block-Division Appearance Model,” IEEE
Trans. Pattern Anal. Mach. Intell., pp. 2420-2440, 2012

[20] Breiman, Leo, “Random Forests,” Machine Learning,
vol. 45, pp. 5–32, 2001

[21] Ligang Zheng, Guoping Qiu and Jiwu Huang, “Efficient
coarse-to-fine near-duplicate image detection in Riemannian
manifold.” ICASSP 2012, pp.977-980.

3836

