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ABSTRACT 

In this paper, we present a fast and accurate Nearest 
Neighbor (NN) search method in the Riemannian manifolds 
formed by a kind of structured data - symmetric positive 
definite (SPD) matrices. We use an ensemble of vocabulary 
trees based on hierarchical k-means clustering and query 
these trees to find the NN candidates in sub-linear time. As 
generating these vocabulary trees with widely used affine-
invariant Riemannian metric (AIRM) will be very time-
demanding, we propose to use the second-order 
approximation to AIRM (SOA-AIRM). We evaluate the 
proposed NN search algorithm in the application scenario of 
near-duplicate image detection in a large database. 
Experimental results demonstrate that the proposed method 
significantly outperforms state of the art techniques in terms 
of both accuracy and speed. 

Index Terms—near duplicate image detection, nearest 
neighbor search, Riemannian manifold, vocabulary forest.  
 

1. INTRODUCTION 
Recent times have seen a steep rise of data which are 

encoded symmetric positive definite (SPD) matrices. 
Covariance, correlation and kernel matrices are typical 
examples of SPD matrices. Some successful applications in 
computer vision related areas that make use of SPD matrices 
include, diffusion-tensor imaging [18], near-duplicate 
image/video detection [1, 17], object tracking [20], activity 
recognition [13] and many others [2, 5].   

Generally speaking, there are two major issues affecting 
the application of SPD matrices to large-scale datasets. First, 
they lie in a Riemannian manifold and it is time consuming 
to compute the similarities (distances) between data points. 
Unlike in vector space where distances between data points 
can be measured by straight line metrics such as Lp-norm, in 
the Riemannian manifold, the distance between data points 
must be calculated following the Riemannian curvature 
which is computationally very expensive. Researchers have 
made much effort to tackle the problem of similarity 
computation for SPD matrices. The simple and naïve 
method is to vectorize SPD matrices and then use Euclidean 
distance. However, it is an inferior choice because it ignores 
the manifold structure.  A more suitable choice is to use 
geodesic distance - affine invariant Riemannian metric 
(AIRM). AIRM has theoretically excellent properties but 

lead to complex algorithms as it involves intensive use of 
matrix inverse, square roots and logarithms [5] or 
generalized eigenvalues [6]. 

In [2], the authors proposed to use matrix logarithm to 
transform manifold into vector space and then use Euclidean 
norm as a metric. However, the matrix logarithm 
transformation is only approximate rather than exact, 
because in general there is no such a mapping that globally 
preserves the distance between the points on the manifold. 
As a result, when used for nearest neighbor (NN) search, 
log-Euclidean Riemannian metric (LERM) is not as accurate 
as widely used AIRM. In [3], the authors proposed Jensen-
Bregman LogDet Divergence (JBLD) which improves 
Bregman Divergence as an efficient similarity measure. 
JBLD is fast to compute but does not satisfy the triangle 
inequality. Another alternative is the symmetrized KL-
Divergence Measure (KLDM) [4], however in some cases 
its accuracy is poor [3].   

Secondly, there are no effective fast NN search 
algorithms in the Riemannian manifold of SPD matrices. 
Researchers have attempted to modify existing fast NN 
search algorithms in vector space which cannot be directly 
applied to non-vector spaces for Riemannian manifolds.  
Zheng et al [21] proposed a coarse-to-fine strategy for 
efficient near-duplicate image detection. The searching 
efficiency will be largely improved when hashing 
algorithms are used in the coarse stage.  However, there 
isn’t a mechanism to decide how many candidates should be 
returned in the coarse stage. Chaudhry and Ivanov [13] 
approximated the manifold with a set of tangent hyper-
planes first and then projected the data onto the tangent 
space using logarithmic mapping.  As the tangent space is 
Euclidean, fast NN search algorithm such as hashing [7] can 
be used in this space. A similar method was chosen by 
Turaga and Chellappa [8] for computer vision applications. 
However, in a manifold, only area around the pole locally 
resembles Euclidean space of a specific dimension. As a 
result, there will be large projection errors for points that are 
far away from the poles [8, 11], causing major inaccuracies 
in NN search.   

On the other hand, authors in [3] adopted Bregman Ball 
Tree (BBT) for fast NN search using JBLD as dissimilarity 
function. The BBT was built through top-down bi-
partitioning the input data space by recursively applying 
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JBLD-K-Means algorithm [3]. The construction of BBT is 
somewhat similar to that of vocabulary tree [10] using 
hierarchical k-means (in BBT algorithm, k = 2). Unlike L2-
norm K-Means in the Euclidean space which optimizing a 
quadratic cost function and is guaranteed to converge to a 
local minimum, the JBLD-K-means algorithm [3] has no 
guarantee of convergence. Even if the JBLD-K-Means 
based BBT converges, it still inherits the two well-known 
problems of K-Means [12]. One is that the clustering is 
sensitive the initial cluster centers and the other is that there 
is no systematic methods to determining the suitable value 
of k (the number of clusters).  

In this paper, we present a novel fast and accurate NN 
search technique for SPD matrices and make two original 
contributions. First, we propose a second-order 
approximation to AIRM under the framework of Baker-
Campbell-Hausdorff [14]. We show that LERM is just the 
first order approximation of AIRM and the Second Order 
Approximation of AIRM (SOA-AIRM) has similar 
computational complexity as LERM but is more accurate. 
Furthermore, we show that SOA-AIRM has competitive 
accuracies as the much more complex AIRM for NN search 
in the manifold of SPD matrices. Second, we introduced an 
ensemble of random vocabulary forest1 as indexing structure 
for fast NN search. In the construction of vocabulary forest, 
we use two different strategies.  The first built the forest 
with varied structure constituent trees while the other built 
the forest with the same structure for each component trees. 
Both methods have a better accuracy and speed performance 
than the state of the art NN search methods for SPD 
matrices. 

Our new method is a generic one and can be applied to 
any applications that use SPD matrices as feature 
representations and there is a need to search for nearest 
neighbors of data points which include many applications in 
information retrieval, pattern recognition, machine learning 
and computer vision. In experimental section, we use 
content based near-duplicate image detection as an 
illustrative application example to make our contribution 
specific and concrete.  
 

2. FAST NEAREST NEIGHBOUR SEARCH USING 
HIERACHICAL VOCABULARY TREES 

2.1 Vocabulary Tree for Nearest Neighbor Search  

To avoid an expensive linear search through database, 
tree-based data structures are widely used to improve the 
efficiency of nearest neighbor search in many applications.  
As a specific kind of tree-based structures, vocabulary tree 
has been widely used in large scale databases for nearest 
neighbor search [9, 10]. The vocabulary tree defines a 
hierarchical quantization of the feature space where the 
nodes are the centroids determined by hierarchical k-means 
clustering of feature descriptors. 

In the online phase, each descriptor is simply propagated 
down the tree by comparing the descriptor to the k candidate 
cluster centers at each level and choosing the closest one. 
This can efficiently find a query’s nearest neighbor in sub-
linear time.  

Currently, most of the existing hierarchical k-means 
clustering are based on Lp norms (e.g., vocabulary tree [10]). 
The problem is that existing hierarchical k-means clustering 
can’t be directly applied to Riemannian manifolds which 
employed geodesic distance instead of Lp norms.  

 Clustering in Riemannian manifolds is not easy, which 
can be attributed to two reasons. The first is the 
aforementioned time-demanding similarity computation 
which will be a major issue when many iterations are 
needed in clustering. The second lies in the fact that, unlike 
arithmetical mean in Euclidean space, there is not a closed 
form solution for Karcher mean [15] in manifolds. For these 
reasons, it will be very time consuming to train a vocabulary 
tree for Riemannian manifolds of SPD matrices using the 
present methods.  

2.2 Riemannian Metric: AIRM and Its Approximation 

We denote S(n)={S∈Rdxd, ST=S}, the space of all n×n 
symmetric matrices and denote P(n)={P(n)∈S(n), P>0}the 
set of all n×n symmetric positive definite (SPD) matrices. 
The symmetric, positive definite matrices in P(n) forms a 
Riemannian manifold. The space is not closed under 
manipulation with negative scalars. According to [5], an 
affine-invariant Riemannian metric (AIRM) is given by, 

,ܺ)ߜ																						  ܻ) 	= ቛlog	(XିభమYXିభమ)ቛ 																			(1) 
where log(X) is the matrix logarithm which converts the 
manifold into vector space. Furthermore, (1) is equivalent to 

,ܺ)ߜ																		 ܻ) 	= ඩ݈݊ଶߣ(ܺ, ܻ)ௗ
ୀଵ 																					(2) 

																																		= ‖log	(YXିଵ)‖																												(3)	 
where λ (X, Y) is generalized eigenvalues of X and Y. This 
metric is perhaps the most widely used distance measure for 
SPD matrices. This metric is theoretically elegant but 
involves matrix inverse and matrix logarithm or generalized 
eigenvalues thus it is time-consuming. Using the Baker-
Campbell-Hausdorff for non-commutative Lie groups [14], 
it has the following approximation, 
,ܺ)ߜ	  ܻ) = ‖log(YXିଵ)‖	 = ‖log(exp	(log(Y)) ∗ exp(log(Xିଵ)))‖ 
               = ‖log(exp	(log(Y)) ∗ exp(−log(X))))‖ 																	= ቛlog(Y) − log(X) + ଵଶ ൫log(ܺ) ∗ (log(ܻ) −																		log(ܻ) ∗ log(ܺ)) + ܱ(‖log(Y) ∗ log(X)‖ଷ)൯ቛ             														≈ ቛlog(Y) − log(X) + ଵଶ (log(ܺ) ∗ log(ܻ) −																						log(ܻ) ∗ 		log(ܺ))ቛ                                   (4) 

1 Vocabulary forest and vocabulary trees are usually an ensemble of 

vocabulary trees, while vocabulary tree is a single tree. 
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It is noted that, as X and Y are SPD matrices, according to 
the matrix theory, log(X) and log(Y) are symmetric matrices.  
Algebra system (S(n), *) is a unchangeable group. So,  log(ܺ) ∗ log(ܻ) − log(ܻ) ∗ log(X) ് 														(5) 
Where 0 is a matrix with each entry is zero. 

The popular log-Euclidean Riemannian metric (LERM) 
[2] that are often used in the literature to transform manifold 
to vector space is defined as follows,  					ߜாோெ(ܺ, ܻ) 		= ‖log(ܺ) − log	(ܻ)‖ி																			(6)  

Comparing (4) and (6), it is easily seen that LERM of (6) 
is a first order approximation to AIRM while (4) is a second 
order approximation to AIRM. LERM is easy to compute as 
it can be easily tackled in ordinary Euclidean space. 
However, when used for NN search it is not as accurate as 
AIRM because in general there is no such mapping that 
globally preserves the distance between the points on the 
manifold [18]. Generally speaking, when used for NN 
search, the second-order approximation (SOA-AIRM) can 
be much more accurate than first-order approximation 
(LERM). ROC curves in Figure 1 demonstrate this fact 
where it is seen that SOA-AIRM is much more accurate 
than LERM and is almost as accurate as AIRM. SOA-AIRM 
shares the same good merits with LERM as it can also be 
tackled in vectorial logarithm space. 

2.3 Clustering using SOA-AIRM 

Clustering is a key component in building vocabulary tree 
using hierarchical k-means. It is very time-demanding to 
train a vocabulary tree in Riemannian space because of 
complicated geometry and a lot of iterations involved in k-
means.  As stated in subsection 2.2, when using SOA-AIRM, 
the clustering can be done in vector space log(X), which 
will be more efficient. In this paper, we choose a specific 
neural network training algorithm, namely the frequency 
sensitive competitive learning (FSCL) [12] algorithm.  
FSCL is reported to be very efficient clustering algorithm 
that is insensitive to initial random cluster centroids, thus 
very suitable for hierarchical k-means clustering for a large 
database. The FSCL method for Riemannian manifold can 
be briefly described as follows: 
1. Preprocessing all the data using matrix logarithm to 

transform the data into vector space. 
2. Conduct k-means using FSCL in the vector space. 
3. Transform the each centroid into Riemannian manifold 

using matrix exponential.  
In our experiments, building a vocabulary tree using SOA-
AIRM costs on average 2% of the time when using AIRM.  

2.4 Building Vocabulary Trees and NN Search   

The idea of building vocabulary trees is burrowed from 
random forests [21]. Vocabulary forest (trees) is an 
ensemble of single vocabulary tree. The vocabulary tree is 
built by hierarchical k-means. For n points in the dataset, it 
will take O(n logk n) time to build a k-ary tree. So the time 

complexity for building N vocabulary trees is N×O(n logk 
n). We create two sets of vocabulary trees using hierarchical 
k-means with fixed k and different k respectively. We 
stopped partitioning the nodes when the number of points 
goes below a threshold. Given a query point, it compares the 
node along the tree from the root. Once it reaches to the 
leaves of all the vocabulary trees, we combine all samples 
falling onto these leaves to do an exhaustive search. As the 
average number of samples in each leaf is small, it is very 
efficient to find the nearest neighbors.  

 

Figure 1: the ROC curve for LERM, AIRM and SOA-AIRM of 
near-duplicate image detection through brute-force search.  The 
experiment setups are described in subsection  4.1 and 4.2.  
 

3. EXPERIMENT AND RESULT ANALYSIS 

In this part, we give our experiment of using vocabulary 
trees for near-duplicate image detection in Riemannian 
manifolds.  
3.1 Experiment Setup 

The evaluation is performed on datasets: 1)INRIA 
Copydays dataset [16] as testing dataset; 2)25,000 Flickr 
images and another 19,634 images (totally 44,634 images) 
as distracting image dataset2. We create totally 46 copies for 
each testing image. For each image, a SCOV3 [1] is 
extracted to represent the image. The receiver operating 
characteristic (ROC) curve and mean average precision 
(mAP) is employed to evaluate the overall performance for 
each algorithm.  
3.2 Experimental Results and Analysis 

3.2.1 ROC Performance for Different NN Searching 

Methods 
   In our experiments, we give the ROC results for brute-
force NN search using LERM and AIRM, single vocabulary 
tree using  SOA-AIRM, multiple vocabulary trees using 
SOA-AIRM (10 trees) and LERM (10 trees), as well as the 
method proposed in [13].  
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2 In order to get a comprehensive performance evaluation of our algorithm, besides the 

challenges mentioned in [16], we extend the transformation types, such as additive noise (salt 

& pepper, Gaussian), flipping, rotate, blur, illumination change, combination attacks, etc. 
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From the results shown in Figure 2, we can see brute-
force NN search using ARIM clearly gives the best ROC 
performance. The proposed method (multiple vocabulary 
trees) can achieve nearly the same ROC performance as 
exhaustive brute force search using AIRM. The performance 
of using SOA-AIRM to build vocabulary forest is better 
than that of using LERM, which demonstrate that SOA-
AIRM has a better accuracy than LERM. We also compare 
multiple vocabulary trees with the algorithm proposed in [13] 
and [21], this method also achieves a significant 
improvement in ROC performance.   
 

 
Figure 2. ROC curves for different methods. [13]-50 is the method 
used in [13] and the number of poles is 50. LERM and AIRM are 
the brute-force search results. LERM (10 trees) is the result of 10 
trees using LERM to build vocabulary forest. SOA-AIRM (single) 
is the result of using one tree while SOA-AIRM (10 trees) is the 
result of using 10 trees each with a different k. Both SOA-AIRM 
(single) and SOA-AIRM (10 trees) used SOA-AIRM to build 
vocabulary forest. CTF  is coarse-to-fine strategy proposed in [21]. 

3.2.2 Time Efficiency Evaluation 

          Table 1: speed and mAP for different methods 
methods Time per query mAP 
AIRM 17s 0.7654
LERM 16.5s 0.6841

10 trees(k not fixed) 0.7s 0.7509
[13]-50 0.71s 0.5992

AIRM means the brute force search using AIRM. LERM means 
the brute force search using LERM. [13]-50 means using the 
method in [13] and the number of poles is 50. 10 trees (k not fixed) 
means the vocabulary forest built using 10 vocabulary trees with 
different k, details refer to subsection 4.3.3. 
 

     Table 1 shows the time efficiency for the proposed 
methods (multiple vocabulary trees), the brute-force method 

using AIRM and LERM, and the method proposed in [13]. 
From table 1, we can see that our method is as fast as the 
method in [13] which is over 20 times faster than using 
brute force searching in a 50 k image dataset. However, it is 
also seen that the accuracy of our method is over 22% better 
than the method of [13].  
3.2.3  Comparison of  Different Vocabulary Forest Building 

Strategy 

   In our experiments, we compare the time efficiency and 
mean average precision (mAP) of different strategies to 
choose k in hierarchical clustering. Specifically, we build 
two sets of vocabulary forests. One set is built with the same 
k, which means that each component tree in the forest is k-
ary (k fixed). The other set of forest is built with different k, 
which means that the component trees in the forest are 2-ary, 
3-ary,…, and 11-ary respectively.   

From Table 2, we can see that the proposed methods 
(both fixed k and different k) outperform the method in [13]. 
What is more, creating the vocabulary forest using the same 
k may result in different results for different k. Because, 
there is no systematic method existed for choosing the best k 
– this is a well-known problem of k-means. On the other 
hand, using hierarchical k-means with a set of different k (k 
= 2, 3,…,K) to create a vocabulary forest can successfully 
address this issue.  

Table 2: the comparison of vocabulary forest. 
methods Time/query mAP 

10 trees(K not fixed) 0.7 0.7509
10 trees(K=5) 0.7 0.7289
10 trees(K=6) 0.7 0.7278
10 trees(K=7) 0.7 0.7380
10 trees(K=8) 0.7 0.6814
10 trees(K=9) 0.7 0.7367

10 trees(K=10) 0.7 0.7376
Each forest contains 10 vocabulary component trees. The 
vocabulary forest in the first row is created using hierarchical k-
means with k=2, 3, 4, 5, 6, 7, 8, 9, 10, 11. The others are created 
with the same k as listed. 
 

4. CONCLUSION 
In this paper, we propose to use vocabulary forest (an 
ensemble of vocabulary trees) as our indexing structure for 
fast and accurate NN search in Riemannian manifolds. In 
order to efficiently train the vocabulary trees in Riemannian 
manifolds, we propose to use the second order 
approximation of AIRM (SOA-AIRM) as similarity 
measure for SPD matrices. This approximation can 
substantially reduce the training time while maintaining the 
NN search accuracy. We also evaluated the different 
strategies to construct the vocabulary trees and found that by 
varying the k in the component trees of the forest can 
achieve robust results. 
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