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ABSTRACT

Many state-of-the-art methods in image retrieval, classifi-
cation and copy detection are based on the Bag-of-Features
(BOF) framework. However, the performance of these sys-
tems is mostly experimentally evaluated and little results are
reported on theoretical performance. In this paper, we present
a statistical framework that makes it possible to analyse the
performance of a simple BOF-system and to better understand
the impact of different design elements such as the robustness
of descriptors, the accuracy of encoding/assignment, infor-
mation preserving pooling and finally decision making. The
proposed framework can be also of interest for a security and
privacy analysis of BOF systems.

Index Terms— Bag-of-features, content identification

1. INTRODUCTION

In recent years BOF based recognition, classification and
retrieval systems have become the state-of-the-art in many
applications ranging from multimedia management to secu-
rity. In addition, in many applications facing strict memory-
complexity restrictions, like in the on-line mobile phone vi-
sual or audio search systems, the BOF systems with carefully
designed descriptors probably remain the only suitable tech-
nology in comparison to emerging yet complex deep learning
frameworks [1, 2, 3, 4]. There are also more complex ag-
gregation frameworks [3], but here we consider a simple yet
tractable BOF system.

However, besides of its remarkable experimental per-
formance, the theoretical analysis of BOF systems remains
largely unexplored. They are often considered as black boxes
where performance is estimated based on a public database,
for some type of descriptors (e.g., SIFT [5], SURF [6], CHOG
[1], ORB [7], BRIEF [8] , etc.) or a certain type of aggrega-
tion method [3], with little theoretical insight. In addition, it
is not completely clear which descriptors in which particular
application framework contribute to successful identification.
Further more, it is not obvious which factors influence se-
curity and which elements of the BOF systems should be
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properly protected. Finally, the optimality of different encod-
ing/assignment and pooling methods is based on empirical
evidence rather than on strictly proven theoretical results.

2. STATE-OF-THE-ART BOF-BASED CONTENT
IDENTIFICATION

Currently, most BOF systems are used for CBIR, object
recognition and copy detection. We will consider content
identification where M items are enrolled and given a probe,
the system should determine the corresponding item or is-
sue a rejection. When it is not possible to return a single
index item, the system should retrieve a list of indices whilst
ensuring that the true item index is on the list. The CBIR
counterpart of content identification retrieves a list of indices
of items similar to the probe.

The performance of BOF-systems is generally evaluated
by simulation, and existing theoretical works [9, 10, 11, 12]
mostly consider content identification based on content fin-
gerprinting where a sufficiently long fingerprint is deduced
to represent the content. In the most theoretical works, per-
fect synchronization between the enrolled fingerprint and the
probe fingerprint is assumed with one notable exception [9]
where fingerprint de-synchronization was modeled by a ran-
dom shift parameter. However, in practice it is not feasible
to design one single fingerprint or descriptor that would be
invariant to all types of distortions, hence multiple local de-
scriptors per image are used. Despite popularity, SIFT de-
scriptors are characterized by the high computational com-
plexity and relatively long length. In the recent years, a num-
ber of short binary descriptors have been proposed (BRIEF,
ORB, etc) [8, 7]. However, in this case the length of the
deployed descriptors does not satisfy the asymptotic assump-
tions considered in the theoretical works [9, 10, 11, 12] which
makes the analysis of practical BOF-systems intractable.

This work has focused on the theoretic analysis of BOF
based content identification systems. To our knowledge there
is little work on the theoretical analysis of BOF-systems’ per-
formance besides [13] and none on BOF based content iden-
tification. Therefore, the goal of this paper is to provide a
simple and tractable model allowing to analyze, optimize and
guide the design of BOF systems. In this paper, we will con-
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sider the case of non-compressed features to reveal the theo-
retical limits of BOF based identification systems, analyze the
impact of descriptor compression and encoding/assignment
as well as discovering the impact of geometrical consistency
between the descriptors on overall system performance. Such
a formulation was not considered in earlier studies.

The paper is organized as follows. The BOF based content
identification problem is formulated in Section 3. Section 4
introduces the statistical model and Section 5 summarises the
performance of the systems. Section 6 and Section 7 present
the results and the conclusions.

3. BOF-BASED CONTENT IDENTIFICATION:
PROBLEM STATEMENT

A content database is defined as a collection of M items
x(m) represented by their features/descriptors x(m) =

{x1
(m), · · · ,x

Jx(m)
(m)}, 1  m  M , with each de-

scriptor xi

(m) 2 XL, 1  i  Jx(m).
The problem is to decide if a query y = {y1

, · · · ,y

Jy}
is related to some elements or not. In the general case, Jy 6=
Jx(m).

The system should produce a list of indices L(y) whilst
ensuring that the correct index m is always on this list and
an empty set, if the probe y is not related to any item in the
database.

The system performance is evaluated by the probability
of missing a correct item and probability of falsely accepting
an unrelated item y as related to some item in the database
leading to the average list of accepted items. Other parame-
ters include memory storage, search complexity, security and
privacy [?, 12]. In this paper, we will focus on the perfor-
mance of the identification system for a given database size
M , parameters of descriptors, their numbers Jx(m) and Jy as
well as targeting efficient search complexity based on inverted
files.

The core idea behind the BOF systems consists in a local
feature based representation of each image aggregated into a
fixed dimensional vector.

Such a representation should ensure fast search of ✏-NN or
k-NN. It is also closely related to the approximations or com-
pression of the descriptors in the visual words space which
can be roughly classified in three groups:

• VQ (hard)-assignment [14]: the descriptor xi is quan-
tized by a coarse vector quantizer (VQ) Q

c

(.) to its
nearest visual word resulting in the approximate ˆ

x

i

=

Q
c

(x

i

);

• source coding with refinement [15]: the descriptor xi is
quantized using the VQ Q

c

(.) to its nearest visual word
with simultaneous storage of the quantized refinement
information about the descriptor with respect to its
quantized version given by fine quantization Q

f

(.) of
the residual vector: ˆ

x

i

= Q
c

(x

i

) + Q
f

(x

i �Q
c

(x

i

));

Fig. 1. Enrolment and identification via the visual codebook.

• soft-assignment [16, 17]: the descriptor xi is approx-
imated in the space of visual words c

j by the linear
approximation: ˆ

x

i

=

P
J

j=1 w

j

c

j with weights {w
j

}.
The different strategies such as sparse coding and LLC
include different selection strategies of weight coeffi-
cients {w

j

}.

The design of a visual codebook in terms of the best ap-
proximation of the descriptors is vital for the trade-off be-
tween memory storage, search complexity and accuracy. That
is why the descriptors are stored in a compressed or approxi-
mated form x

i ! ˆ

x

i with special indexing using hierarchical
structures. However, to reveal the theoretical limits of the
identification systems based on BOF, we will assume that the
descriptors are uncompressed corresponding to a very fine ap-
proximation targeted by many state-of-the-art techniques [2].

For these reasons, we will consider the equivalent model
shown in Figure 1 consisting of enrollment and identification
via the equivalent codebook Cx = (x

1
, · · · ,x

J

)

T 2 RJ⇥L.
This equivalent codebook contains all unique descriptors, the
composition of which gives the representation of a particular
image x(m). Note that the representation of each image in
terms of the visual codebook with an appropriate indexing
structure in the form of the inverted files makes it possible to
obtain an efficient search [15].

4. STATISTICAL MODEL OF BOF CONTENT
IDENTIFICATION

The statistical model of BOF content identification includes
the definition of: (a) statistics of descriptors x

i, (b) sta-
tistical observation model p(y

k|xi

), (c) model of encod-
ing/assignment, (d) model of decision making about the
descriptor presence/absence and geometric consistency veri-
fication 1, and finally (e) model of global decision making or
decoding.

Database of descriptors In this paper, we will assume
that the local sparse descriptors xi 2 XL are i.i.d. like ORB
following some distribution X

i ⇠ p(x

i

) =

Q
L

n=1 p(x

i

n

)

2.
1We will also investigate the upper theoretic limit assuming the perfect

synchronization.
2One can consider different descriptors: local or global, sparse or dense,

multilevel and binary. The i.i.d. assumption is not valid for SIFT descriptors
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Statistical observation model The statistical observation
model for the entire image is expressed in terms of statistical
model for the local descriptors:

p(y|x(m)) ⌘
JyY

k=1

Jx(m)Y

i=1

p(y

k|xi

(m)), (1)

which reduces to p(y|x(m)) ⌘ Q
Je

k=1 p(y

k|xk

(m)) in the
synchronized case, i.e., the exact correspondence between the
descriptors is known with J

e

= min{Jx(m), Jy}.
The above probabilistic model can be also mapped into

some metric space via p(y

k|xi

(m)) / e

�d(yk
,x

i(m)), where
d(y

k

,x

i

(m)) represents a distance between two descriptors.
The performance of the descriptors is measured in terms

of their ROCs defined by the probabilities of miss P

D

M

=

Pr{d(x

k

,Y

k

) � ✏L} and probability of false acceptance
P

D

F

= Pr{d(x

i

,Y

k

) < ✏L} where ✏ is the threshold. In this
paper, we assume that the descriptors of non enrolled items
under hypothesis H

m

0 follow the same statistical distribution
as under hypothesis H

m

.
Model of encoding/assignment In this paper, we will

consider hard assignment to investigate the system perfor-
mance under the minimum requested memory storage re-
quirements [15, 18] 3. The encoding matrix can be gener-
ally constructed as Cx(m) = (c

1
x(m), · · · , c

Jx(m)
x (m)) 2

RJ⇥Jx(m), where each column c

i

x(m) stands for the code rep-
resenting encoding of the descriptor xi

(m), 1  i  Jx(m)

with respect to the visual codebook Cx. In the case of hard
assignment, Cx(m) 2 {0, 1}J⇥Jx(m) with the elements
c

i

xj

(m) = 1 for j : x

j

= x

i

(m) or zero-distance between the
descriptor and codebook codeword, i.e., j 2 L(x

i

(m)) with
the list L(x

i

(m)) = {j 2 {1, · · · , J} : d(x

j

,x

i

(m)) = 0}.
Given the case that the descriptors are matched without

geometrical consistency, i.e., they are desynchronized, and
there are generally a different number of descriptors in the en-
rolled image Jx(m) and probe Jy, pooling is used. To address
this, there are two common types of pooling average- and
max- pooling. In the case of hard assignment at the enrollment
stage they are equivalent. The enrolled fixed-length sparse
code for the image m is dx(m) = (d

1
x(m), · · · , d

J

x (m))

T 2
{0, 1}J whose elements are d

avj
x (m) =

P
Jx(m)
i=1 c

i

xj (m) in
the average-pooling and d

maxj
x (m) = max1iJx(m) c

i

xj (m)

in the max-pooling.
Model of decision making about the descriptor pres-

ence/absence and geometric consistency verification Given
a probe y consisting of Jy descriptors, the encoding matrix
for the probe is defined as Cy = (c

1
y , · · · , c

Jy
y ) 2 {0, 1}J⇥Jy ,

with c

k

y j

= 1 for j 2 L(y

k

) with the list L(y

k

) = {j 2
{1, · · · , J} : d(x

j

,y

k

)  ✏L}. This decoder corresponds to

which manifest high correlation between elements.
3The hard/soft assignments represent a trade-off between the memory

storage and decoding complexity.

the BDD or ✏-NN decoder which seeks all {xj} NNs in the
radius ✏L from the query descriptor yk.

The corresponding average- and max-pooled fixed-length
vectors are defined as d

avj
y =

P
Jy
k=1 c

k

yj
in the average-

pooling and d

maxj
y = max1kJy c

k

yj
in the max-pooling.

In following, we will only consider the max-pooling to its
reported superior performance [16].

The statistics of matrix Cy are completely defined by the
probabilities of descriptor miss P

D

M

and false acceptance P

D

F

defined above.
Model of global decision making or decoding The final

decision is based on the list decoder that produces a list of
possible candidates:

L(y) = {m 2 {1, · · · , M} : t(m) � ⌧J}, (2)

where t(m) = d

T

x (m)dy stands for the similarity score be-
tween two vectors that can also represent a cosine distance,
that is often used in the BOF systems, if the vectors are nor-
malized by their norms ||dx(m)|| and ||dy||.

Remark: In the synchronized case, when the correspon-
dence between the descriptors from two images is established,
one can estimate the upper bound on the system performance
by evaluating the similarity between two matrices as t(m) =

Cx(m)�Cy, where � denotes the Frobenius inner product 4.

5. PERFORMANCE UNDER MAX-POOLING AND
PERFECT SYNCHRONIZATION

The overall system performance is evaluated by the probabil-
ity of miss P

M

, i.e., the correct m does not appear on the
decoder’s list under the hypothesis H

m

, P

M

= Pr{T (m) 
⌧J

e

|H
m

} and by the probability of false acceptance P

F

, i.e.,
an incorrect m

0 appears on the decoder’s list under the hy-
pothesis H

m

0 , P

F

= Pr{T (m) > ⌧J

e

|H
m

0}, where ⌧ 2
(0, 1) is the threshold and J

e

stands for the equivalent length
under different pooling strategies. The average list size can
be estimated as E{|L(y)|} = MP

F

. In the case of unique
identification, the list size is 1.

Without loss of generality, we will assume that the same
number of descriptors is enrolled for all images, i.e., Jx(m) =

Jx, which is a reasonable assumption for most of the identifi-
cation systems where the enrolment is under the control.

The sufficient statistics in the case of max-pooling and
perfect synchronization are:

T (m) ⇠
⇢ B(J

e

, ✓(m)), for H
m

,

B(J

e

, ✓(m

0
)), for H

m

0
,

(3)

where B denotes the Bernoulli distribution and for the max-
pooling: J

e

= min{Jx, Jy}, ✓(m) = 1 � (1 � P

D

D

)(1 �
P

D

F

)

Jy�1 and ✓(m

0
) = 1� (1� P

D

F

)

Jy for the perfectly syn-
chronized case: ✓(m) = P

D

D

and ✓(m

0
) = P

D

F

.

4In the synchronized case, the matrices are of the same size.
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Fig. 2. Typical ROCs for matched and non-matched SIFT and
ORB descriptors under scaling 0.5, rotation 100 and JPEG 75.

The performance of the content identification system is
estimated based on the list decoder which is characterized by
the probability of miss:

P

M

= Pr{T (m)  ⌧J

e

|H
m

}

=

⌧JeX

d=0

✓
J

e

d

◆
✓

d

(m)(1 � ✓(m))

Je�d

 2

�JeD(⌧k✓(m))
, (4)

where D(⌧k✓(m)) denotes the divergence, the threshold
should satisfy 0  ✓(m

0
) < ⌧ < ✓(m)  1 and the average

list of candidates is:

E{|L(Y)|} = MP

F

= M Pr{T (m) > ⌧J

e

|H
m

0}

= M

JeX

d=⌧Je

✓
J

e

d

◆
✓

d

(m

0
)(1 � ✓(m

0
))

Je�d

 M2

�JeD(⌧k✓(m0))
. (5)

To keep the non-exponential size of the list of candidates, M

should be chosen accordingly. Using the notion of the identi-
fication rate as R = 1/J

e

log2 M , one can target the condition
R  D(⌧k✓(m0

)) to keep this list small.
In some applications, it is interesting to keep both proba-

bilities of errors small, for which one can minimize the max-
imum probability of error under optimal ⌧ and ✏ as follows:
(⌧̂ , ✏̂) = argmin

⌧,✏

(max{P
M

(⌧, ✏), P

F

(⌧, ✏)}).
6. RESULTS OF COMPUTER SIMULATION

Since the overall system performance is determined by the
ROC curves of the descriptors, we first investigated the typi-
cal ROC curves for SIFT and ORB descriptors shown in Fig-
ure 2 for the copydays database [19] containing 157 images
generating approximately 100’000 descriptors and SIFT pro-
duces better results at a computational cost.

The experimental distributions of parameter T (m) and
their theoretical counterparts (3) under the hypothesis H

m

and H
m

0 for the max-pooling and synchronized case for a
pair P

D

M

= 0.3, P

D

F

= 0.001 and Jx = Jy = 50 are shown in
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Fig. 3. Distributions of similarity score for the ORB descrip-
tor with max-pooling (MP) and perfect synchronization (SY)
under correct and incorrect hypothesis.

Figure 3. The theoretically predicted curves are in accordance
with the experimental data.

Finally, the overall performance of system is summarized
in terms of max{P

M

(⌧, ✏), P

F

(⌧, ✏)} as a function of ✏ and
⌧ for the theoretical distributions 5. Note that the system
has a global minimum for optimal pair of the thresholds ⌧, ✏.
Therefore, if one specifies the descriptor, our model suggests
a set of optimal parameters under max-pooling to optimize
overall performance. Additionally, the theoretically attain-
able performance for the perfectly synchronized descriptors
indicates the gap with max-pooling and significance of fur-
ther re-ranking steps.

0 0.1 0.2 0.3 0.4

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

 ε

m
in

 (
 m

a
x 

( 
P

M
 ,
 P

F
 )

)

 

 

ORB
SIFT

0 0.1 0.2 0.3 0.4

10
−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

 ε

m
in

 (
 m

a
x 

( 
P

M
 ,
 P

F
 )

)

 

 

ORB
SIFT

Fig. 4. Performance of BOF-based identification system for
the max-pooling (left) and synchronized (right) system with
SIFT and ORB descriptors.

7. CONCLUSION
In this paper, we introduced a simple and tractable model of
BOF content identification systems. We plan to extend this
model to (a) compare the max- and average-pooling strate-
gies, (b) find an optimal regime for the descriptors encoding
for different pooling methods, (c) find the number of items
M leading to a non-exponential size of list of candidates and
finally (d) investigate the impact of compression and soft as-
signment on overall system performance.

5The results are obtained based on the analytical pmfs to highlight the
order of expected exponents which can not be attained by limited computer
simulations.
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