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ABSTRACT

Recently, the demand for more robust protection against u-
nauthorized use of mobile devices has been rapidly grow-
ing. This paper presents a novel biometric modality Tran-
sient Evoked Otoacoustic Emission (TEOAE) for mobile se-
curity. Prior works have investigated TEOAE for biometrics
in a setting where an individual is to be identified among a
pre-enrolled identity gallery. However, this limits the appli-
cability to mobile environment, where attacks in most cases
are from imposters unknown to the system before. There-
fore, we employ an unsupervised learning approach based on
Autoencoder Neural Network to tackle such blind recogni-
tion problem. The learning model is trained upon a generic
dataset and used to verify an individual in a random popula-
tion. We also introduce the framework of mobile biometric
system considering practical application. Experiments show
the merits of the proposed method and system performance
is further evaluated by cross-validation with an average EER
2.41% achieved.

Index Terms— Mobile Security, Biometric Verification,
Otoacoustic Emission, Time-frequency Analysis, Autoen-
coder Neural Network

1. INTRODUCTION

Nowadays, mobile devices have outgrown their initial use for
communication and have added many powerful functionali-
ties, such as data storage, web access and remote commerce,
etc. The increasing need for greater mobile security has been
opening up new areas in biometrics.

However, the reliability of conventional biometric modal-
ities for mobile security has been questioned due to the threat
of advanced spoofing techniques. For example, fingerprints
can be easily taken from the surface of phone screen or any-
where touched, and an artificial clone can be created by plas-
tic mold and gelatin [1]. Transient Evoked Otoacoustic Emis-
sion (TEOAE) for biometrics that we investigate in this work,

This work has been supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

however, is naturally immune to falsification or replay attacks
as a physiological signal.

TEOAE is an approximate 20 ms acoustic response gen-
erated by an active process occurring inside the cochlea after
a low level short click stimulus [2]. TEOAE echoes back to
the middle ear and ear canal, and thus can be easily collected
by an earphone with built-in microphones. Importantly, its u-
niqueness among individuals which was primarily discovered
in biological and clinical studies [3, 4] has been utilized for
identity recognition [5, 6, 7]. Moreover, it is almost impossi-
ble to fabricate someone’s auditory system and extremely dif-
ficult to steal his/her TEOAE, as an outcome of physiological
activity of the auditory perception in response to a specific
acoustic stimulation. Overall, its compatibility with mobile
devices and robustness make it an advantageous modality for
mobile security.

Rest of the paper is organized as follows. Section 2 is
a review of previous work and elaboration on the relation to
this work here. Section 3 provides detailed methodology fol-
lowed by the mobile biometric system proposed in Section 4.
After that, Section 5 presents experimental results and analy-
sis. Lastly Section 6 concludes our work.

2. RELATED WORKS

In [6], Grabham et al. conducted a quantitative study of
TEOAE for biometrics by approximating the distribution of
the intra-subject and inter-subject distance through maximum
likelihood estimation to the time series data (raw signal).
Later, our previous work [7] argued that analyzing TEOAE in
only time domain is suboptimal due to the fact that TEOAE
is a cumulative response consisting of different frequency
components evoked by the broadband stimulus. Wavelet
analysis was therefore employed to derive the time-frequency
representation of the signal prior to recognition procedure.

Previous work [7] presented high accuracy in identifica-
tion by applying linear discriminant analysis (LDA) to maxi-
mize between-class scatter. As it assumed a closed-set gallery
among which an individual is to be identified as a pre-enrolled
identity, it is however not applicable to mobile setting. In
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such an open-ended scenario, attacks in most cases are from
imposters unregistered or unknown to the system in advance
(for instance a thief attempts to be authenticated on a smart
phone).

The method proposed here translates previous work to
mobile security setting by adopting an unsupervised learning
approach based on Autoencoder Neural Network [8, 9]. The
learning model is trained upon a generic dataset and used to
verify an individual in a random population, which tackles the
blind recognition problem.

3. VERIFICATION ALGORITHM

3.1. Time-frequency Representation

First, the time-frequency representation algorithm in [7] as a
pre-processing procedure is herein revisited.

According to [10], TEOAE is generated from the vibra-
tion pattern of basilar membrane in cochlea depending on the
spectral energy of the stimulus. When a broadband stimu-
lus is used, TEOAE becomes a cumulative response consist-
ing of several dominant frequency components. As a time-
frequency analysis tool, continuous wavelet transform (CWT)
is therefore used to separate the mixed frequency components.
Let ψ(t) be the mother wavelet, a narrow band-pass func-
tion whose Fourier transform is centered around frequency
f0. The wavelet transform of a signal x(t) regarding ψ(t) is
defined as:

WTx(a, b) =
1√
a

∫ +∞

−∞
x(t)ψ∗(

t− b

a
)dt (1)

where ψ( t−b
a ) is the adjustable window function with scale

factor a and time translation factor b. The Fourier version
of ψ( t−b

a ) is the same band-pass function centered around
f0/a. Thus, with different scale factor, corresponding fre-
quency component can be extracted from the original signal.

Previous work [7] showed that with Daubechies 5 as
mother wavelet, frequency component extracted at scale =
8 serves as good representation of the original signal, i.e., it
can well differentiate (“identify”) itself from those of other
sources. Take two subjects from a TEOAE dataset [11] for
example (Figure 1), representations reveal high similarity
within the same subject (A) and low similarity between dif-
ferent subjects (A and B), while such similarity is difficult to
detect in the original signals.

3.2. Feature Extraction Based on Autoencoder

In pattern verification, for high-dimensional features, di-
mension reduction is usually implemented prior to similarity
matching to avoid possible redundance and irrelevance of
the features. An unsupervised learning model Autoencoder
Neural Network [8, 9] is employed in this work to further
extract effective features.
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Fig. 1. Original signal from subject A of two different ses-
sions, and from subject B respectively, along with each corre-
sponding representation.

Autoencoder is an artificial neural network with an input
layer, an output layer which has the same meaning as the in-
put one, and one or more hidden layer(s). In this work, the
autoencoder (Figure 2) trains a signal hidden layer h such that
the output layer ẑ is forced to reproduce the input layer z. In
particular, provided that an input sample is of d dimension,
the hidden layer consisting of a smaller subset n (n < d)
nodes is parameterized by a weight W 1 ∈ �d×n and bias
b1 ∈ �n, and is computed by:

h = sig(W T
1 z + b1) (2)

where sig{∗} is the activation function with sigmoid kernel.
Similarly, the approximation output is computed by:

ẑ = sig(W T
2 h+ b2) (3)

where weight W 2 ∈ �n×d and bias b2 ∈ �d.
Given a training set of M CWT resulting vectors {z(1),

z(2), ..., z(M)}, back-propagation algorithm is applied to
learn the autoencoder model Θ = {W 1, b1,W 2, b2} by
minimizing the following cost function:

J(Θ) = JMSE + Jweight

=
1

M

M∑
i=1

(
1

2
‖ẑ(i) − z(i)‖2) + λ

2
(‖W 1‖2 + ‖W 2‖2)

(4)
where the first term JMSE is the mean squared error of recon-
struction, qualifying the difference between z(i) and the cor-
responding reconstructed version ẑ(i); Jweight is the weight
decay term, with a regularization factor λ, tending to prevent
overfitting. The minimization of (4) is typically accomplished
by an iterative optimization method such as gradient descent
or Newton’s method (e.g., L-BFGS as the one we employ).

The well-trained model Θ∗ is then used to extract the fea-
tures h(i) of the training samples z(i) via (2) with optimal
W ∗

1 and b∗1. Moreover, given a new input z′, its feature h′ can
be extracted in the same way, i.e., h′ = sig(W ∗

1
T
z′ + b∗1).
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Fig. 2. Illustration of the applied autoencoder model.

3.3. Matching

Given two vectors z(a) and z(b) representing TEOAE signals
x(a) and x(b) after CWT respectively, verification is conduct-
ed on the corresponding features h(a) and h(b). In this work,
Euclidean distance is chosen as a metric, where similarity s-
core S between x(a) and x(b) is calculated by:

S(x(a),x(b)) =

√
(h(a) − h(b))T (h(a) − h(b)) (5)

A smaller value means a higher similarity between two signal-
s, i.e., they are more likely to represent the same person. An
ACCEPT decision is made only if S(x(a),x(b)) ≤ t, where t
is a distance threshold.

4. MOBILE BIOMETRIC SYSTEM

4.1. System Framework

In this section, a complete framework of the mobile biometric
system is proposed, which involves a generic dataset setup
stage, an enrollment stage and a verification stage. A block
diagram of the proposed system is depicted in Figure 3.
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Fig. 3. Framework of the proposed mobile biometric system.

Since in mobile biometric environment, imposters may be
unknown to the system, the generic pool is intended for future
training in order to create a paradigm of TEOAE morpholo-
gies. It is an anonymous collection of representation vectors
of TEOAE samples from a large population after CWT.

During the enrollment session, TEOAE is acquired from
an enrollee and subjected to the same time-frequency anal-

ysis. Resulting representation vector z(k)
en is then combined

with the generic pool and used to drive the autoencoder-based
learning algorithm. Such an enrollee-oriented (personalized)
training approach that takes the enrollee’s sample against the
generic pool helps handle false accept. The well-trained mod-
el with parameters W ∗

1 and b∗1, and the learned template con-
sisting of the feature set h(k)

en extracted and a user specific
decision threshold t(k), establish the system database (see the
dash line in Figure 3).

As for verification operation, an individual gets recorded
and claims an identity k. Following CWT, feature h′ is ex-
tracted according to the trained model. The biometric system
will retrieve the corresponding template h(k)

en from the gallery
and conduct a one-to-one matching between h′ and h(k)

en . De-
cision of either accept or reject the claim is finally made.

4.2. Application Scenario

As an example, Figure 4 exhibits how the proposed system
is applied to mobile commerce (e.g., remote banking, phone
purchase). To fulfill registration for the secure system, a
client’s phone is responsible for TEOAE data acquisition and
transmission to the remote server in the administrator’s side,
where data processing algorithms are afterwards implement-
ed. When a user (who is either the authorized client or an
illegitimate one) is signing in, the server receives data sent
from user’s phone and performs matching after computation.
It finally responds to both the administrator and the user
whether follow-up transaction is allowed or refused. It is
expected that security questions whose answers can be easily
discovered (e.g., ”What is your mother’s maiden name?”,
”What is your date of birth?”) will no longer be asked.
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Generic
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System
Dataset

Computing
&

Matching
Decision

Data
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Decline
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Smart Phone
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Fig. 4. Architecture of the secure biometric system in mobile
commerce.

Further, local application (e.g., user verification, private
data access) of the proposed biometric system share the same
architecture, except that datasets are stored and computation
is conducted locally or on a client-server with which the de-
vice needs to communicate.
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5. EXPERIMENTS AND RESULTS

Experiments in this work are conducted on a biometric setting
dataset [11] with 54 subjects. For each subject, more than 20
TEOAE recordings were collected from both ears in each of
two separate sessions (with time interval of at least one week
for biometric evaluation purpose). For simplicity, we initially
investigate data collected from the left ear. Last 10 recordings
from 30 subjects in the first session are used to simulate the
generic dataset; last 10 recordings from the remaining 24 sub-
jects in the first and second session are adopted to constitute
the enrollment set and the testing (verification) set respective-
ly. Verification performance is measured in false accept rate
(FAR), false reject rate (FRR) and equal error rate (EER), i.e.,
the rate at which FAR and FRR are equal.

Firstly, to justify the merit of the enrollee-oriented train-
ing approach, comparison is conducted between training with
and without subject’s enrollment sample. Figure 5 shows the
detection error tradeoff (DET) curve under each approach,
where an EER 19.58% is obtained by appending enrollee’s
sample to the training set, while 24.58% without such in-
volvement. It proves that personalized training can effective-
ly handle false accept and hence reduce EER. Moreover, EER
rises to 30.34% by using the LDA approach [7], which in-
dicates the closed setting assumption is inapplicable to the
open-ended scenario.
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Fig. 5. DET curve under personalized training and non-
personalized training.

On the other hand, it is observed that certain individual-
s have stronger TEOAE templates with smaller intra-subject
variability than others, while some bear relatively larger fluc-
tuation over time (e.g., subject 24 versus subject 12 as shown
in Figure 6 individual ROC plots). This is generally known
for all biometric modalities and it is therefore unadvisable to
impose an universal decision threshold to all users. Instead,
based on personal ROC plots, system can choose the desired
user-specific threshold t(k) for an individual k depending on
requirement of a particular application scenario, and store it
for future use. If for example a number of intruders are ex-
pected, low FAR is preferred over FRR and a smaller thresh-
old is therefore suggested. Or as shown in Table 1, individu-
al threshold is selected at which FAR equates to FRR, guar-
anteeing a good trade-off between both risks. In this way,
the particular intra-subject variability of different user is fully

considered and system performance is greatly improved with
an average EER 2.29% achieved.
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Fig. 6. Individual ROC plots for selected subjects.

Table 1. EER for individual subjects with user-specific
threshold.

Subject ID t(k) EER Improved by
1 1.180 0.00% 19.58%
2 0.784 0.00% 19.58%
3 1.404 0.00% 19.58%
4 0.837 4.35% 15.23%
5 1.626 0.44% 19.14%
6 0.728 0.00% 19.58%
7 1.371 9.13% 10.45%
... ... ... ...
... ... ... ...
... ... ... ...
24 0.332 3.04% 16.54%

Average – 2.29% 17.29%

Cross-validation is finally performed to estimate system
performance. For each round, 30 subjects whose recordings
constitute the generic dataset are randomly chosen; record-
ings from the remaining 24 subjects in the first and second
session establish the enrollment and testing set respectively.
Results (EERs) are then averaged over 200 iterations to pro-
duce a performance evaluation, 2.41%±1.38% (mean±std)
for the left ear and 2.81%±1.35% for the right.

6. CONCLUSION

In this paper, we have presented securing model devices
through personal acoustic “fingerprints” TEOAE, which is
immune to fabrication or falsification. To tackle the blind
recognition problem in mobile environment, i.e., authentica-
tion among an unknown population, we resort to Autoencoder
Neural Network to extract effective features after CWT-based
time-frequency analysis. In addition, we tailor verification
of each enrollee via personalized training approach and user-
specific decision thresholds. Experiment results have demon-
strated the efficiency of the proposed methodology.
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