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ABSTRACT

The hyperanalytic signal is the straight forward generalization

of the classical analytic signal. It is defined by a complexifi-

cation of two canonical complex signals, which can be con-

sidered as an inverse operation of the Cayley-Dickson form

of the quaternion. Inspired by the polar form of an analytic

signal where the real instantaneous envelope and phase can be

determined, this paper presents a novel method to generate a

polar representation of the hyperanalytic signal, in which the

continuously complex envelope and phase can be uniquely

defined. Comparing to other existing methods, the proposed

polar representation does not have sign ambiguity between

the envelope and the phase, which makes the definition of the

instantaneous complex frequency possible.

Index Terms— hyperanalytic signal, quaternionic signal,

polar representation, instantaneous complex envelope, instan-

taneous complex frequency

1. INTRODUCTION

In the signal processing community, the analytic signal is

computed as a complexification of a real-valued signal, gen-

erated by the signal itself and its Hilbert transform, see, e.g.,

[1]. This is a well-known model for signal characterization.

Based on it, the instantaneous amplitude or envelope, the

instantaneous phase, and, thus, the instantaneous frequency

of the given signal can be well identified. Then, with the

obtained time and instantaneous amplitude and frequency

quantities, the constructed time-frequency-amplitude (TFA)

spectrum may illustrate valuable information for data classi-

fication, signal decomposition and many other applications.

Nowadays, in many applications, e.g., geophysical [2, 3]

or meteorological [4] data analysis, signals simultaneously

sampled from multiple sensors may not be efficiently char-

acterized based on the classical model. Moreover, the sub-

components of non-stationary multivariate signals by using

an adaptive data decomposition method, e.g., [4, 5], also need

a versatile TFA representation. Therefore, it is necessary to

develop a solid theory for multivariate signal analysis.
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A multivariate version based on quarternions, so-called

monogenic signals, with applications to images was devel-

oped in [6]. In [7], the concept of hyperanalytic signal (H-

signal) was proposed to provide a hypercomplex represen-

tation of the given complex or bivariate signal by using a

one-sided quaternionic Fourier transform [8]. Inspired by the

Cayley-Dickson form, the generated H-signal may be repre-

sented in a polar form where the corresponding envelope and

the phase are complex [9]. However, there is a sign ambiguity

between the envelope and the phase, which results in the fac-

t that the definition of the instantaneous complex frequency

is unclear. [2] introduced another method for complex signal

characterization based on the modulated elliptical model [10].

This paper firstly reviews the quaternion computation and

the H-signal construction from a given complex signal. Then

the polar representation of the quaternion and the correspond-

ing sign ambiguity will be explained. After that we present

a novel envelope recovery algorithm based on a linear zero-

crossing prediction, which results in an unique polar form for

the H-signal. Thus, the instantaneous complex frequency can

be naturally defined. We illustrate the efficiency of the pro-

posed method via a representative numerical study, and close

with a discussion and some final remarks.

2. QUATERNIONIC SIGNALS

2.1. Quaternion and its operations

A quaternion, introduced by Hamilton in 1843, is for the

Cartesian coordinate axes the set H := {qr+iqi+jqj+kqk :
qr, qi, qj , qk ∈ R} where {1, i, j, k} customarily denotes the

basis. Every element q ∈ H can be uniquely written in a

linear combination of these basis elements.

The real part of q, denoted as the scalar, is S(q) := qr,

while the residual is denoted by V(q) := q−S(q). q is called

a pure quaternion when qr = 0. Each basis element is con-

sidered as the root of −1. Multiplications among them satisfy

i2 = j2 = k2 = ijk = −1, which results in the poten-

tial rules ij = −ji = k, jk = −kj = i, ki = −ik = j.

Note that the quaternion multiplication is not commutative,

e.g., qp 6= pq, for q, p ∈ H. The conjugate of q is defined as
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q̄ = qr−iqi−jqj−kqk, and, thus, the Euclidean norm of q is

‖q‖ :=
√
qq̄ =

√

q2r + q2i + q2j + q2k. Then the inverse of q is

given by q−1 := q̄
‖q‖2 . By applying the Cayley-Dickson form,

any quaternion can be represented as a pair of complex num-

bers, e.g. q = qr+iqi+jqj+kqk = (qr+iqi)+(qj+iqd)j =:
z1 + z2j, for z1, z2 ∈ C.

Definition 2.1 Given a quaternion q ∈ H, the exponential
and the natural logarithm of q can be defined by

e
q := eS(q)

(

cos(‖V(q)‖) + V(q)
‖V(q)‖

sin(‖V(q)‖)
)

, (1)

ln(q) := ln(‖q‖) + V(q)
‖V(q)‖

arccos(S(q)
‖q‖

). (2)

2.2. Hyperanalytic signal

For any complex signal z(t) ∈ C, the quaternionic Fourier

transform (QFT) of z(t) may have left, right and double-sided

versions, since the exponential kernel placed in different po-

sitions leads to different results. In the present context, the

right QFT is appropriate for the H-signal construction [7, 8].

Definition 2.2 Given a complex signal z(t) ∈ C, and a unit

quaternionµ ∈ H, the right QFT of z(t) with respect to (w.r.t)

the µ-axis is defined by

ẑµ(ω) = Fq
µ[z(t)] :=

∫

R
z(t)e−µωtdt (3)

If we replace the µ-axis with a canonical j-axis, the Fq
j of

a real signal a(t) can be considered as the Fourier transform

of a(t). Thus, the QFT can be sped up by the fast Fourier

transform (FFT) as follows.

Corollary 2.3 Given a complex signal z(t) = zr(t) + izi(t),
t, zr(t), zi(t) ∈ R, and the quaternionic j-axis, the right QFT

of z(t) can be expressed in terms of the Fourier transform

ẑj(ω) = Fq
j [z(t)] = Fj [zr(t)] + iFj[zi(t)] (4)

Based on the QFT, we can modify the Hilbert transform

(HT) in the Hamilton space. In the time domain, the output of

the HT of a complex signal should still be a complex signal

that is orthogonal to the input. Then this pair of signals can be

combined in a Cayley-Dickson form to generate a quaternion-

ic signal (Q-signal). In the frequency domain, the frequency

of such generated Q-signal should be physically meaningful,

i.e., nonnegative.

Definition 2.4 Given a complex signal z(t) ∈ C and a unit

quaternion µ ∈ H, the quaternionic Hilbert transform (QHT)

of z(t) w.r.t the µ-axis is defined by

Hq
µ[z(t)] := Fq

µ
−1 [−µ sgn(ω)Fq

µ[z(t)]
]

. (5)

Here, Fq
µ
−1 means the inverse QFT. The QHT can also be

defined in the time domain by Hq
µ[z(t)] := PV(z(t) ∗ 1

πt
),

where PV denotes the Cauchy principal value and ∗ represents

the convolution. Replacing again the µ-axis with the j-axis,

(5) can be further simplified.

Corollary 2.5 Given a complex signal z(t) = zr(t) + izi(t),
t, zr(t), zi(t) ∈ R, and the quaternionic j-axis, the QHT of

z(t) can be expressed in terms of the HT

Hq
j [z(t)] = H[zr(t)] + iH[zi(t)]. (6)

Similar to the analytic signal model, we can construct the

H-signal for any given complex signal, which is indeed a sub-

set of the Q-signal.

Definition 2.6 Given a complex signal z(t) ∈ C, the hyper-

analytic signal is defined by

s(t) := z(t) + o(t)j = z(t) +Hq
j [z(t)]j, (7)

where o(t) is the QHT of z(t) w.r.t the j-axis.

3. HYPERANALYTICAL SIGNAL MODEL

3.1. Sign ambiguity in the polar form

Suppose the quaternion q = qr + iqi + jqj + kqk is given,

qr, qi, qj , qk ∈ R, and its polar representation is in the form of

q := AeBj , whereA := a+ib, B := c+id, and a, b, c, d ∈ R.

As Bj is a pure quaternion, according to (1), the exponential

of Bj can be expressed as

e
Bj := α+ jβ + kγ

:= cos(‖B‖) + j c
‖B‖

sin(‖B‖) + k d
‖B‖

sin(‖B‖),
(8)

where ‖B‖ =
√
c2 + d2 [9]. Then, we arrive at the equations

q = qr + iqi + jqj + kqk := AeBj

= aα+ ibα+ j(aβ − bγ) + k(aγ + bβ).
(9)

Since the complex envelopeA can be expressed in polar form

by A := ‖A‖eiφA = ‖q‖eiφA , we can determine that the axis

of the known complex component qr + iqi equals to the axis

of aα+ ibα. In other words, with an axis operator defined as

A(a+ ib) := a+ib
‖a+ib‖ , we have following relationship

eiφA = A(a+ ib) = A(qr+iqi)
sgn(α) , (10)

where sgn(·) is the signum function. Obviously, this leads to

an ambiguity in sign between the complex envelopeA and the

phase B since the sgn(α) is unknown for computing eiφA .

3.2. Complex envelope recovery

To simplify the polar representation of the H-signal, denoted

by q(t) = A(t)eB(t)j , t ∈ [0, T ], we assume a unit signal to

be processed in this section, i.e., ‖q(t)‖ = 1. Then the un-

wanted sgn(α) in (10) can be removed by taking the modulus

of the real and imaginary components on both sides,

| cos(φA(t))| = |a(t)| = |q̃r(t)|,
| sin(φA(t))| = |b(t)| = |q̃i(t)|,

(11)
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Fig. 1. Eight possibilities for the sign recovery of the envelope

A(t) = a(t) + ib(t) based on the modulus components of the axis

A(qr(t) + iqi(t)). P (positive) and N (negative) denote the sign

of the former half-period of the recovered component ã(t) and b̃(t).
Black dots and magenta pluses denote sampling cases 1 and 2, and

red stars imply the ideal local minima (Color online).

where A(qr(t) + iqi(t)) := q̃r(t) + iq̃i(t).

Recall that we are considering a continuous hyperanalyt-

ical signal model, in which the complex envelope A(t) and,

thus, the real phase φA(t) should be continuous. Therefore, if

the initial range of the phase was limited, i.e., φA(0) ∈ [0, π2 ],
in view of the continuity, the recovered envelopes ã(t) and

b̃(t) could be determined independently, as |q̃r(t)| and |q̃i(t)|
are already known. In detail, since the sign changing of the

envelope a(t) or b(t) only occurs at zero-crossing (ZC) posi-

tion which is nothing but the local minimum of the modulus

|q̃r(t)| or |q̃i(t)|, in principle, we can recover the envelope by

retrieving the sign of every half-period (HP) of the modulus

signal from beginning to the end, where the HP is defined as

the interval between every two nearest local minima of the

modulus signal.

However, the local minimum of the modulus signal may

be positive but not the ZC because we do not require that the

phase φA(t) is monotonically non-decreasing. Therefore, we

need to classify all cases into two classes: class I denotes the

case the local minimum is the ZC, while class II implies a pos-

itive local minimum. In addition, for discrete data, the accura-

cy of the local minimum position is affected by the sampling

rate, which means that the current local minimum may be the

last point of the former HP (case 1), or the first point of the

following one (case 2). Therefore, if we ignore special cases

for stationary points, in total, there will be eight possibilities

which may occur around the local minimum. For instance, in

class I, we have to consider the former HP is positive (case

P ) or negative (case N ), each of which contains another two

sampling cases. Fig. 1 gives a comprehensive illustration of

all possibilities.

To distinguish these different possibilities, we employ

a linear ZC prediction method based on every two succes-

sive samples around the local minimum. Take the case P1
in Fig. 1 (a) as an example. Black dots are denoted by

ã(tn−1), ã(tn) and ã(tn+1), among which tn corresponds to

the local minimum. The predicted ZC position is

T n
ã := tn+1 − ã(tn+1)

tn+1−tn
ã(tn+1)−ã(tn)

. (12)

Similarly, T n

b̃
can be calculated for the imaginary compo-

nent. Then, with the information of the sign of the samples

ã(tn−1) and ã(tn+1) and the estimates T n
ã and T n−1

ã , we

can determine to which case the current local minimum be-

longs. Also considering the black dots in Fig. 1 (a), we can

firstly determine that the former HP is positive (case P ) as

sgn(ã(tn−1)) = sgn(ã(tn+1)). Secondly, we can determine

the class I as the estimate T n−1
ã is valid (tn ≤ T n−1

ã ≤ tn+1),

and simultaneously the sampling case 1 as the estimate T n
ã

is invalid (T n
ã < tn−1). Therefore, we can keep the sign of

ã(tn) and then change the sign of the following NP from tn+1

to the former point of the next local minimum.

Since the case determination contains many IF–ELSE

conditions, we only present a simplified envelope recovery

algorithm as follows. The accuracy of the ZC prediction

is guaranteed as the sampling frequency is high enough,

otherwise the instantaneous frequency cannot be correctly

estimated because of the violation of the sampling theorem.

Algorithm : Complex Envelope Recovery Algorithm

1. Initialize the recovered components ã(t) = |q̃r(t)| (b̃(t) =
|q̃i(t)|), and the range of φA(0), e.g., φA(0) ∈ [0, π

2
];

2. Detect the local minimum of ã(t) (b̃(t)), and retrieve the sign

of the first HP based on the range of the phase;

3. Recover the envelope by retrieving the sign of the flowing HP

based on the sign of the former HP and the determined case

at the local minimum ã(tn) (b̃(tn));

4. Output the complex envelope A(t) = ã(t) + ib̃(t).

3.3. Unique polar representation

Once the complex envelope is recovered, the quaternionic car-

rier eB(t)j can be computed by

eB(t)j := α(t) + jβ(t) + kγ(t) = Ā(t)q(t)
‖q(t)‖2 , (13)

and the complex phase B(t) can be derived based on (2)

B(t) := c(t) + id(t) = A(β(t) + iγ(t)) arccos(α(t)). (14)

From (8), we know that there is still a sign ambiguity

between sin(‖B(t)‖) and c(t) or d(t). However, since

both sin(·) and cos(·) functions are periodic, we have that

sin(‖B(t)‖) = sin(‖B(t)‖ ± 2mπ), and cos(‖B(t)‖) =
cos(‖B(t)‖ ± 2mπ), m ∈ N. Thus, it is reasonable to
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assume that c(t), d(t) are non-negative and monotonically

non-decreasing, and the initial phase c(0), d(0) should sat-

isfy ‖B(0)‖ :=
√

c(0)2 + d(0)2 ∈ [0, 2π). Finally, we

can uniquely retrieve the phases c(t) and d(t) based on the

unwrapped arccos(α(t)) in (14). The reason to unwrap the

phase arccos(α(t)) but not the ones c̆(t) and d̆(t) (which

are directly computed in (14) without unwrapping) is be-

cause only the phase arccos(α(t)) has a fixed period 2π.

Then the retrieved phases c̃(t) and d̃(t) can be considered

as approximations of the ideal ones that are monotonically

non-decreasing. Thus, we have proved the following result.

Theorem 3.1 Given a complex signal z(t) ∈ C, the hyperan-

alytic signal can be constructed by s(t) := z(t) +Hq
j [z(t)]j,

s(t) ∈ H, which has an unique polar form s(t) = A(t)eB(t)j ,

A(t), B(t) ∈ C, if (A(t), B(t)) is the canonical complex pair

where A(t) := ‖s(t)‖eiφA(t), φA(0) ∈ [0, π2 ], and B(t) :=
c(t) + id(t), c(t), d(t) ≥ 0, ‖B(0)‖ ∈ [0, 2π).

Bearing in mind that the instantaneous frequency should

be nonnegative, therefore, each component of the unwrapped

complex phaseB(t) should be monotonically non-decreasing,

and the unwrapped phase φA(t) is the same if the complex

envelope A(t) is an analytic signal.

Definition 3.2 Given a complex signal z(t) ∈ C and let the

polar form of its hyperanalytic signal be s(t) := A(t)eB(t)j :=
‖s(t)‖eiφA(t)e(c(t)+id(t))j , φA(t), c(t), d(t) ≥ 0. The instan-

taneous complex frequency of z(t) is defined by

fB(t) := fBr
(t) + ifBi

(t) = 1
2π (

d(c(t))
dt

+ i
d(d(t))

dt
), (15)

and the instantaneous frequency of the complex envelopeA(t)

is defined by fA(t) :=
d(φA(t))

2πdt if A(t) is an analytic signal.

4. NUMERICAL STUDY

To illustrate the efficiency of the proposed method, we design

a representative hyperanalytical signal model

s(t) := e−te7 sin(2πt)ie(40πt+i(20πt+4 cos(2πt)))j , (16)

for t ∈ [0, 0.4], from which one can define A(t) := a(t) +
ib(t) = e−te7 sin(2πt)i, and B(t) := c(t) + id(t) = 40πt +
i(20πt + 4 cos(2πt)). Thus we can obtain the given com-

plex signal z(t) = zr(t) + izi(t) based on (7) and (9), and

determine the instantaneous complex frequency by fB(t) :=
fBr

(t) + ifBi
(t) = 20 + i(10 − 4 sin(2πt)). Here, fA(t) is

not well defined since it can be negative.

Fig. 2 illustrates all respective results for the given sig-

nal z(t). In sub-figures (a) and (b), Ă(t) := ă(t) + ib̆(t) =
‖q(t)‖A(qr(t) + iqi(t)) is the reconstructed envelope based

on (9), which contains the sign ambiguity. Obviously, the re-

covered Ã(t) := ã(t)+ib̃(t) using the proposed method coin-

cides strongly with the ideal complex envelope. Sub-figures
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Fig. 2. Numerical results for the H-signal model. Top: real and

imaginary (R&I) parts of the given complex signal z(t), the recov-

ered envelope Ã(t), and the one Ă(t) containing the sign ambiguity;

Middle: R&I parts of the ideal complex phase B(t), the recovered

one with (B̃(t) := c̃(t)+ id̃(t)) and without (B̆(t) := c̆(t)+ id̆(t))
unwrapping; Bottom: R&I parts of the ideal instantaneous complex

frequency fB(t), the estimated one f̃B(t) based on B̃(t), and the

absolute difference between each of them, DfBr
(t) := |fBr

(t) −
f̃Br

(t)|, DfBi
(t) := |fBi

(t)− f̃Bi
(t)| (Color online).

(c) and (d) imply the importance of the phase unwrapping,

while sub-figures (e) and (f) show the efficiency of the es-

timation of the instantaneous complex frequency. Since the

real component of fB(t) is a constant, the absolute difference

between it and the estimated one f̃Br
is around machine ac-

curacy. However, the absolute difference between fBi
and

f̃Bi
is larger since fBi

is nonlinear and thus the correspond-

ing estimation accuracy is corrupted by the discrete derivative

computation at different time positions.

5. CONCLUSION

We presented an efficient method for the unique polar repre-

sentation of the hyperanalytic signal that is constructed from

any given complex signal with continuous real and imaginary

components. Based on this H-signal model, we can obtain a

canonical pair of continuously instantaneous complex enve-

lope and phase, in which the phase consists of monotonically

non-decreasing sub-components that leads to a natural defini-

tion of the instantaneous complex frequency. Moreover, the

instantaneous real frequency of the complex envelope can al-

so be well-defined if the envelope is an analytical signal.

The developed H-signal model implies an interesting ex-

tension of the multivariate signal characterization to arbitrary

space dimensions, which may have potential applications in

such fields where the time-frequency-amplitude information

is representative for multivariate signal analysis.
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