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ABSTRACT

In this paper, it is shown that an appropriate model for voiced
speech is an all-pole filter excited by a block sparse excitation
sequence. The modeling approach is generalized in a novel
manner to deal with a wide spectrum of speech signal; voiced
speech, unvoiced speech and mixed excitation speech. In this
context, the input sequence to the all-pole model is modeled
as a suitable weighted linear combination of a block sparse
signal and white noise. We develop the corresponding estima-
tion procedure to reconstruct the generalized input sequence
and model parameters via sparse Bayesian learning methods
employing the Expectation-Maximization based procedure.
Rigorous experiments have been performed to show the effi-
cacy of our proposed model for the speech modeling task. By
imposing a block sparse structure on the input sequence, the
problems associated with the commonly used Linear Predic-
tion approach is alleviated leading to a more robust modeling
scheme.

Index Terms— Deconvolution, speech, Sparse bayesian
Learning, Expectation-Maximization

1. INTRODUCTION

In speech modeling, an all pole model is most commonly used
to model the vocal tract. Depending on the nature of the ut-
terance, voiced, unvoiced or mixed, the input to the all-pole
filter is either a glottal pulse train, white noise, or a combina-
tion of glottal pulses and white noise respectively. Estimation
of the model parameters has a long history and a popular ap-
proach is the linear prediction (LP) based all pole model pa-
rameters estimation which involves minimizing the 2-norm of
the residual, the difference between the observed signal and
the predicted signal. The residual signal in all pole modeling
is the input excitation sequence. Because of the 2-norm min-
imization approach, such estimation methods work well for
unvoiced speech where the input to the filter is white noise.
The 2-norm minimization based linear prediction approach
suffers from some well known problems [1] in the case of
voiced speech. The spectrum of the resulting model tends
to overestimate the spectral powers at the formant frequen-
cies, providing a sharper contour than the original vocal tract

response. Several different methods have been proposed to
alleviate these effects. Some of the proposed techniques in-
volve a general rethinking of the spectral modeling problem
[2, 3] while some others are based on changing the statistical
assumptions made on the prediction error in the minimiza-
tion process [4, 5]. Recently, instead of minimizing the 2-
norm of the residual, methods based on minimizing the one
norm of the residual, to accommodate the spike train nature
of the input sequence, have been suggested with some success
for voiced speech [6]. Interesting algorithms [6, 7] based on
reweighted l1 approaches have been employed to exploit the
sparsity assumption on the input process.

In case of voiced speech, the excitation can be considered
to be a sparse excitation of a quasi-periodic nature [8]. The
excitation component of the voiced speech production model
is known as the glottal excitation. The structure of this glottal
excitation has been an interesting topic of research for sev-
eral years. From Figure 1 the temporal extent of the glottal
pulses show that a block sparse structure is more appropriate.
Thus to make the voiced speech modeling task more robust
and efficient we propose a framework where the excitation
has a prior block sparse quasi-periodic structure. It is useful
to note that block sparsity has been studied before in the con-
text of sparse signal recovery, but they are usually for under-
determined problems and the block sparsity is imposed on the
solution vector [9], not on the residual as discussed here. The
model is then generalized to deal with the broad spectrum of
speech signals. In our proposed model the residual is modeled
as being a linear combination of two components: a block
sparse component and a Gaussian i.i.d white noise compo-
nent. By appropriately weighting the components, this model
for the input can deal with all speech utterances; voiced, un-
voiced speech and mixed excitation speech.

Fig. 1. Shape of Glottal Excitation
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The rest of the paper is organized in the following way.
Section 2 presents the model and discusses its advantages and
disadvantages and Section 3 provides a detailed description of
the estimation procedure of the parameters. Section 4 summa-
rizes the performance of the proposed model over synthetic
data, and Section 5 presents the results of the speech mod-
eling problem over the Vowel dataset and finally Section 6
concludes the paper.

2. PROPOSED MODEL

Since we are modeling the vocal tract using all-pole models,
we will consider the signal to have been generated by an all-
pole filter excited by an appropriate input, either block sparse,
white noise or a combination. The all-pole model parameters
and the nature of excitation input sequence are not known be-
fore hand. For instance, in speech this depends on the utter-
ance. This production model can be described by the follow-
ing difference equation,

x(n) =

M∑
k=1

akx(n− k) + w(n) + e(n) (1)

Thus x(n) is written as a linear combination of past M sam-
ples. Here ak are the model parameters and w(n) is the block
sparse excitation sequence, whereas e(n) is the non sparse
white noise component. Now considering this production
model for a segment of sample length N, for n=1 to N, we
can represent this model in matrix form as,

Y = Xa + w + e (2)

Where, Y = [x(M + 1), x(M + 2) · · ·x(N)]T , X is the
known data matrix which is constructed from the known time
series data. A pictorial representation of this model is shown
in Figure 2. The main idea behind this model is that w will
capture the (block) sparse excitation and e will capture the
standard non-sparse Gaussian excitation and provide a richer
class of excitation sequences and richer class of models.
In the context of speech, by appropriate weighting of these
components we have the ingredients to deal with all types
of speech signals. For voiced speech, w will dominate the
residual. For unvoiced speech, e will dominate the resid-
ual. For mixed speech both components would be present
at appropriate levels. For the block sparse structure of w,
we assume that the all the block sizes are equal and equal to
d, and that the blocks are non-overlapping and contiguous,
i.e. block boundaries known. Though a more general block
structure can be imposed, our experiments indicate that the
methods developed work reasonably with a properly chosen
block size d.

3. PARAMETER ESTIMATION

To estimate the parameters of our model, we can proceed in
two ways. First is a deterministic setting where an extension

Fig. 2. Pictorial Representation of the proposed model

of the l1 norm is considered such as a mixed norm l1/l2 norm,
i.e. minimizing the l1 norm of the l2 norm of the blocks. In
our work, we have chosen a probabilistic setting by adopt-
ing the empirical Bayes approach because of its flexibility
and it also readily allows this type of two component noise
modeling technique [10]. In particular, we utilize the Sparse
Bayesian learning (SBL) [11] methodology. Detailed analysis
of the original SBL for sparse signal recovery have been ex-
tensively discussed in several literatures[12] [13]. Interested
readers are referred to these references for more details. We
will use a standard EM algorithm to estimate the parameters
of our model. It is assumes that

p(e) = N(0, σ2I) (3)

Thus,

p(Y−Xa|w, σ2) = (2πσ2)−
N
2 exp−|Y −Xa−w|2

2σ2
(4)

For this model framework we will assume that the error w has
a normal distribution with mean zero and a block structure
of block size d. Under the SBL formulation, the covariance
matrix of these error blocks is modeled as γiI, i = 1, .., L.
Hence the covariance matrix of the complete error sequence
is

Γ = diag(γ1I, ......, γLI) (5)

Here γi is the hyperparameter which controls the variance of
the ith block and have to be learnt. If γi = 0, it means that
the corresponding block will also be zero.

To estimate the values of the parameters a, σ2 and γis we
will use the EM algorithm and will consider w as the latent
variable. The complete loglikelihood can be written as,

L = −N
2

log 2πσ2 − 1

2σ2
|Y −Xa−w|2 − N

2
log 2π−

1

2
log(det(Γ))− 1

2
wᵀΓ−1w
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The Q function is defined as,

Q = Ew|Y−Xat−1,σ2
t−1,γt−1

[L] (6)

Thus we need to know, Ew|Y−Xat−1,σ2
t−1,γt−1

[w] and
Ew|Y−Xat−1,σ2

t−1,γt−1
[wᵀw]

After some simple manipulations we obtain,

Ŵ1 = Ew|Y−Xat−1,σ2
t−1,γt−1

[w]

= (I + σ2
t−1Γ−1t−1)−1(Y −Xat−1)

and, Ŵ2 = Ew|Y−Xat−1,σ2
t−1,γt−1

[wᵀw]

= (I + σ2
t−1Γ−1t−1)−1(Y −Xat−1)(Y −Xat−1)ᵀ

(I + σ2
t−1Γ−1t−1)−1 + (σ−2t−1I + Γ−1t−1)−1

In the M-step we will maximize the Q function with re-
spect to our model parameters. So after taking derivative with
respect to the parameters and setting them to zero we get,

γi =
1

d

id∑
j=(i−1)d+1

ŵ2
j where, ŵ2

j = [Ŵ2]j,j (7)

σ2 =
1

N
[|Y −Xa|2 − 2(Y −Xa)ᵀŴ1 + tr(Ŵ2)] (8)

a = (XᵀX)−1Xᵀ(Y − Ŵ1) (9)

Hence by using these update rules the parameters of the model
can be estimated in each iteration.

4. EXPERIMENTS ON SYNTHETIC DATA

In this section we will discuss the experiments over the syn-
thetic data to validate our above mentioned models. Here,
we will use an all pole model that has been obtained after
modeling a speech segment using LPC technique, to produce
the synthetic speech signal by passing three different types of
excitations through it. As we are dealing with block sparse
excitations, the period of these block excitation becomes an
important factor and this can be viewed as the pitch period.
Thus, in the language of speech domain all the experiments
have been performed using two pitch frequencies, 100 Hz and
200 Hz. Now as this pitch frequency changes with time in
case of speech signals, a little randomization has also been
introduced when using this pitch frequency. We did the ex-
periments for two cases where case 1 is f1 = 100 + N(0, 9)
and case 2 is f2 = 200 + N(0, 9) where N(0, 9) is normal
random variable with mean 0 and variance 9. For all these ex-
periments we have used block size= 6 (empirically chosen).

The performance of a spectral envelope estimation method
can be measured in many ways. An often used criterion for
measuring quality is the spectral distortion between esti-
mated all pole model S′(ω,a) and the true all pole model

S(ω) which is the ground truth where, S(ω) = 1
|A(ejω)|2 and

A(ejω) is defined by the filter coefficient vector (a0.....aM ).
This Spectral Distortion measure is defined as,

SD =

√√√√√ 1

2π

π∫
−π

[10 log10 S(ω)− 10 log10 S
′(ω,a)]2dω

(10)

For a pair of spectra S(ω) and S′(ω,a), by applying Par-
seval’s Theorem we can relate the l2 cepstral distance of the
spectra to the previously defined log spectral distortion,

SD2 =

∞∑
n=−∞

(cn − c′n)2 (11)

For these experiments over synthetic data, cepstral coef-
ficients are determined from the all pole model coefficients
using the recursive relation [14] and the spectral distortion is
measured using the above mentioned cepstral distance of the
spectra. For three different types of input signals these exper-
iments are performed. (Input 1: Block sparse signal, Input 2:
Block sparse signal plus additive white Gaussian noise, Input
3: white Gaussian noise)

In Table 1 the spectral distortion measures are tabulated,
using the mean of 200 frames of these three input signals.

Table 1. Spectral Distortion Measure over synthetic data

Inputs Frequency Std of noise Spectral Distortion

Proposed Model LPC

Input1 100 Hz 1.0484 1.0651
200 Hz 1.0279 1.0660

Input2

100 Hz 0.1 0.6155 0.7010
0.4 0.2814 0.3541
0.6 0.2776 0.2989

200 Hz 0.1 0.6562 0.8363
0.4 0.3639 0.4320
0.6 0.3019 0.3069

Input3 0.2 0.2683 0.2432

From the results shown in Table 1 it is evident that our
proposed modeling method is very effective for voiced and
mixed excitation signals.

5. EXPERIMENTS OVER VOWEL DATASET

As discussed before, our proposed model can deal with all
the aspects of speech: voiced, unvoiced and also the mixed
excitations. The experiments in the previous section using
synthetic data also endorses our claim. So in this section we
will continue our experiments over the vowel dataset using
the proposed model and we will compare the performance of
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our model with widely used LPC speech modeling technique.
This dataset has audio recording of 12 Vowels i.e /i/, /I/, /ε/,
/æ/, /2/, /a/, /O/, /U/, /u/, /3/, /e/, /o/ spoken by a male speaker.
The sampling frequency is 16 Khz. Speech signals are quasi-
stationary, so they are divided into segments within which the
signal can be regarded as stationary. We will use a 20 ms win-
dow as each segment, hence it will consist of 320 samples.
All pole model of order(M)=20 has been used to model each
of these segments. The spectral distortion measure for each
vowel is computed as the mean over all the speech segments
of that vowel. For both the models, the spectral distortion
measure for each vowel is tabulated in Table 2. For 8 cases
out of 12 vowels, our model performs better than well known
LPC technique in terms of spectral distortion measure. Fig-
ure 3 shows the estimated envelopes using both the models
along with the periodogram of a speech segment of vowel /a/.
One can observe that the modeling technique results in for-
mants that do not have the peaky behavior, LPC techniques
are known to suffer from.

Table 2. Spectral Distortion Measure over Vowel data

Vowels Models

Proposed Model LPC

/i/ 4.1492 4.6053

/I/ 4.0753 4.0511
/ε/ 4.0985 3.8473
/æ/ 3.7462 3.8677

/2/ 4.4092 4.4179

/a/ 3.2895 3.4036

/O/ 5.2601 5.2598
/U/ 4.6470 4.8754

/u/ 5.7985 5.6795
/3/ 4.8576 5.0481

/e/ 3.6325 3.6431

/o/ 5.0795 5.1003

6. CONCLUSION

In this paper, we have proposed a novel model to reconstruct
block sparse excitation from the output of an all pole filter.
We have used our model for the speech modeling task and the
spectral distortion measure of the estimated envelope estab-
lishes our claim, that this is a more generalized and efficient
modeling approach than linear prediction. As this problem is
closely related to a more general deconvolution problem, ap-
plying these models in several other applications along with
theoretically establishing the optimality of this model will be
the direction of the future works.

Fig. 3. Spectrum of a segment of vowel /a/
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