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ABSTRACT
Non-negative matrix factorization (NMF) has emerged as a
promising approach for single-channel speech separation. In
this paper, we propose a new method of discriminative learn-
ing of NMF. In contrast to conventional approaches where the
basis vectors are learned independently on clean signals from
each speaker, our approach optimizes all basis vectors jointly
to reconstruct both clean signals and mixed signals well. Our
empirical studies validated our approach. Specifically, dis-
criminative NMF outperforms standard methods by a large
margin in improving signal-to-noise ratio for reconstructing
signals.

Index Terms— non-negative matrix factorization, dis-
criminative training, speech separation

1. INTRODUCTION

Sound source separation is a classical problem in auditory
scene analysis [1]. In particular, single-channel speech sepa-
ration – extracting individual streams of speech from a mixed
signal of several speakers – is a challenging task with many
applications in robust automatic speech recognition, speech
enhancement, and others.

Recently, non-negative matrix factorization (NMF) has
been extensively investigated and has since emerged as a
promising approach for this task [2, 3, 4, 5, 6, 7]. Specifically,
the magnitude spectrogram of the mixed signal is modeled as
an additive superposition of the spectrograms of individual
speakers. Moreover, each individual speaker’s spectrograms
are modeled as non-negative combinations of basis vectors.
The basis vectors are speaker-dependent and learned in unsu-
pervised manner from those speakers’ speech samples. Once
learned, NMF identifies the optimal combination coefficients
for any mixed signal and use them to reconstruct each sound
source. Note that learning the basic vectors for one speaker is
completely independent of learning for another.

One drawback of this type of independent learning is that
the learned basis vectors excel at the task of reconstructing
signals but not at lifting the corresponding signals out of
mixed ones. In particular, since learning the basis vectors for

one speaker occurs without any knowledge (or interference)
of other speakers, the basis vectors for this speaker are not
discriminative enough to tell apart which elements in the
mixed signals are the most relevant. For instance, it is possi-
ble that the basis vectors learned for one speaker also models
well other speakers’ speech signals [7].

In this paper, we propose a new approach to learn dis-
criminative basis for NMF. Given a set of speakers and their
speech samples, we construct discriminative tasks by mixing
speech samples from different speakers. Our discriminative
method optimizes basis vectors such that they can be used to
reconstruct speech signals well even when the target signals
are mixed with others. Distinctively our method proposed that
the basis vectors for all speakers are learned jointly.

The numerical optimization procedure is an instance of
coordinate-descent where at each iteration, we select one
speaker and optimize the corresponding basis vectors while
holding the basis vectors from other speakers fixed. The up-
dates inherit the multiplicative form of NMF and converge
monotonically to a local optimum.

We evaluate the proposed method for speech separation
using the GRID speech corpus with sparse NMF (SNMF) as
baseline. The empirical study validates our approach, which
improves the evaluation metric of signal-to-noise ratio signif-
icantly over the baseline for reconstructing signals.

Related work [6] is similar to our work in spirit, but they only
learn the basis vectors for one sound source discriminatively.
[7] minimizes the overlapping among basis vectors to prevent
one speaker’s basis vectors to model other speakers well. [8]
learns the basis vector in a supervised manner by assuming
the knowledge of the ideal combination coefficients.

2. NMF AND ITS VARIANTS

The main idea of non-negative matrix factorization (NMF) is
to model data additively with non-negative parts. In the con-
text of modeling speech data with NMF, we represent speech
signals with the non-negative magnitudes of their spectra –
in this paper, we use mel spectra, the power spectra mapped
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onto the mel scale. In what follows, we describe NMF first
then sparse NMF.

2.1. Non-negative matrix factorization

Let Sa ∈ RD×T denote the mel-spectra computed from the
a-th speaker’s speech samples. D denotes the number of mel
scales and T denote the number of analysis windows (i.e.,
frames). For notational simplicity, we assume all speakers
have the same T.

We model Sa as the non-negative combination of the
speaker’s basis vectors Wa ∈ RD×K where K is the number
of basis vectors, assumed to be the same for all speakers too.
The combination coefficients are denoted by Ha ∈ RK×T.
We constrain both the basis vectors and the coefficients to be
non-negative, modeling data as superpositions of parts [2].

The aim of NMF is to approximate Sa as much as pos-
sible under those constraints, using the reconstruction com-
puted from linear combination

Ra = WaHa ≈ Sa (1)

In this paper, we use generalized KL divergence to measure
the approximation errors so as to exemplify the NMF algo-
rithm, though other choices are possible too [9]:

J(Sa,Ra) = Tr[(Sa � log(Sa �Ra)− Sa +Ra)1T,D] (2)

where� and� stand for the Hadamard product and division,
respectively. 1P,Q stands for an all-one element matrix with
dimensions of P× Q. When the context is clear, we omit the
dimensions of those special matrices. For instance, the trace
operator Tr applies only when the argument is a square ma-
trix, which can be used to infer the dimensions. The log is
defaulted to be element-wise logarithm. Throughout the rest
of the paper, we impose the order of algebraic evaluations is
to associate from the left to the right, except where the paren-
theses and functions (such as log) take precedence.

2.2. Sparse non-negative matrix factorization

The original NMF described in the previous section often
achieves sparse solutions where the basis vectors correspond
to distinctive parts, such as localized facial structures (e.g.,
nose, eyebrows) [2]. This means we only need a subset of
basis vectors to represent unknown signals and these basis
vectors are necessarily redundant.

Sparse NMF further improves the spareness in the solu-
tions by learning basis vectors while enforcing a sparsity reg-
ularization on the combination coefficients [10]. Concretely,
the method minimizes the following reconstruction error

Jλ(Sa,Ra) = J(Sa,Ra) + λTr[Ha1] (3)

The `1-norm of the coefficients promotes sparseness in Ha,
similar to its role in compressive sensing, thus forcing learn-
ing a set of basis vectors that are overcomplete.

In practice, however, having a small-valued regularizer
Ha can be achieved by scaling Ha to arbitrarily small val-
ues while compensating by scaling up the basis vectors. This
type of scaling does not promote sparseness. Instead, we need
to hold the the basis vectors at a fixed scale such that min-
imizing the objective function Jλ(Sa,Ra) can be driven by
making Ha sparse.

To this end, the reconstruction Ra is computed using the
column-wise normalized basis vector

Ra = W aHa, with W adk =
Wadk√∑
dW

2
adk

(4)

Learning Wa and Ha can be cast as multiplicative updates,
though the monotonic convergence property is lost,

H ←H�(W TV � (W T1D,T + λ))

W ←W�
{
[V HT + 1D,D(1D,TH

T �W )�W ]

� [1D,TH
T + 1D,D(V HT �W )�W ]

} (5)

where V = S � R. We have dropped the subscript a to
avoid notation cluttering. Essentially, those updates converge
to stationary points of the objective function. The derivation
is similar to what is in [11].

3. DISCRIMINATIVE NMF

The methods of NMF and its variants, as described in the
previous section, learn each speaker’s basis vectors indepen-
dently. They are optimized to reconstruct clean signals when
there is no interference from other speakers. Thus, while our
goal is to separate mixed speech, such learning strategy does
not lead to basis vectors that optimize the quality of recon-
structed signals under interference. For example, if the basis
vectors for one of the two speakers can also model the other
speaker well, then it is difficult to see how we can reliably
extract both speakers’ speech well.

In what follows, we describe our approach of discrimina-
tive NMF for tackling this problem. The key idea is to learn
basis vectors such that we have good reconstructions when
applied to both clean and mixed signals.

Concretely, given a training corpus of speech signals of
several speakers, we mix those signals in pairwise and ar-
tificially construct many speech separation tasks. Specifi-
cally, assume we have N speakers and each speaker has M
utterances. We further assume in the interest of simplifying
notation, each utterance is equal in length thus yielding the
same number of analysis frames T. We will construct a total
N(N− 1)M2 speech separation tasks.

Let Sai denote the mel-spectra of the a-th speaker’s i-th
sentence and Sabij denote the mel-spectra of the signal from
mixing the a-th speaker’s i-th sentence with the b-th speaker’s
j-th sentence.

Our objective function for learning the basis vector con-
sists of two major components. The first component is anal-
ogous to the regular NMF, where we desire the basis vectors
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reconstruct clean signals well for every speaker:

J1 =
∑
a,i

J(Sai,Rai) =
∑
a,i

J(Sai,W aHai) (6)

where Hai is the reconstruction coefficients for the corre-
sponding pair of speaker and sentence.

The second component is composed of the objective func-
tions for the speech separation tasks we have created

J2 =
∑
a

∑
b 6=a,i,j

J(Sabij ,Rabij)

=
∑
a

∑
b 6=a,i,j

J(Sabij ,W aHai +W bHbj)
(7)

while we have imposed that the reconstruction for the mixed
signals should be computed using the combination coeffi-
cients from the clean signals.

The form of J2 couples J1 together: it is not sufficient to
minimize J1 so as to reconstruct well only for clean signals,
as in the regular NMF. The basis vectors need to be discrimi-
natively optimized such that they can also be used to compute
reconstruction signals to approximate the mixed signals.

We balance the two forces by optimizing a joint objective
function, also combined with a sparsity regularizer,

J = MJ1 + J2 + λα
∑
a,i

Tr[Hai1] (8)

The pre-factor M scales J1 up to match J2. Similarly, α is
used to scale the regularizer up to match J1 and J2 so that we
can compare to the regular sparse NMF using the same regu-
larizer strength λ. In practice, we choose α = NM, reflecting
the number of times any Rai occurring in J .

Algorithmically, optimizing J entails jointly optimiz-
ing all basis vectors together because of the mutual depen-
dency.We propose the following iterative strategy to optimize
each speaker’s basis vectors in turn.

The numerical optimization consists of two main loops.
The outside loop selects (in round-robbin) a speaker. We then
hold all other speakers’ basis vectors and combination coef-
ficients as fixed. The inside loop optimizes the basis vectors
and the combination coefficients of the selected speaker. Note
that J1 now contains only one adjustable terms, while J2 now
contains only (N − 1)M2 terms – all related to the selected
speaker. All these terms are in the form of generalized KL
divergence, except their basis vectors and combination coef-
ficients are tied.

Hai ←Hai �

W T
a

∑
b,j

V �
(
NM(W T

a1+ λ)
)

Wa ←Wa �

∑
i,b,j

(
V HT

ai + 1(1HT
ai �Wa)�Wa

)

�
∑
i,b,j

(
1HT

ai + 1(V HT
ai �Wa)�Wa

)

(9)

where V = Sabij �Rabij (We assume when b = a, Sabij =
Sai, Rabij = Rai). Wa is normalized after each update. In-
tuitively, tied parameters lead to accumulating gradients from
all related error terms.

4. EXPERIMENTS

We evaluate our method of discriminative NMF (DNMF) and
contrast to (sparse) NMF (SNMF) for speech separation.

4.1. Setup

We use the speech data in the Grid Corpus [12]. The corpus
consists of 34 speakers, each speaking 1000 short sentences.
We randomly select 8 out of 34 speakers and use the first 500
sentences for training and the rest half for evaluating.

The mel-spectra of the speech data was extracted using the
package describe in [13], similar to what was used in previous
works on this dataset [4]. Concretely, the signals were pre-
emphasized with a FIR filter 1−0.95z−1 and analyzed with a
32-ms window (800 samples at 25KHz sampling rate) sliding
at 16 milliseconds. The power spectra were then mapped to
80 mel scales covering from 0Hz to 4KHz. For DNMF, a
long sentence containing 10 short sentences was grouped for
each speaker – the sole purpose is to reduce the number of
artificial speech separation tasks we need to create in order to
discriminatively learn basis vectors.

We randomly initialize basis vectors and combination co-
efficients, for NMF, sparse NMF and DNMF. We stop the iter-
ative procedures if the maximum number of iterations, which
is 100, is reached or the improvement over successive itera-
tions drops below the threshold of 0.001.

We examine how well signals are separated from mixed
signals in two ways. Our first metric is the signal-noise-ratio
(SNR) on mel-spectra. Specifically, given the spectra S of the
clean signal and its reconstruction R, this metric is defined

as: SNRMEL = 10 log10

∑
d,t S

2
dt∑

d,t(Sdt−Rdt)2
. Note that this metric

keeps close track of our objective function.
Our second metric is SNRWAV– SNR on reconstructed

speech waveforms, inverted from mel-spectra. We first in-
vert reconstructed mel-spectra into frequency domain with
the phase of the mixed speech. Then the spectral mask was
computed and applied to the spectrogram of the mixed sig-
nal. We extract each speaker’s spectrogram and then invert
the spectrogram to obtain the final estimate of the speech
waveforms. This procedure is inspired by the recent work
estimating spectral mask as an intermediate step of obtaining
speech waveforms [14]. Note that this procedure tends to
eclipse the differences of different methods.

For either metric, we sample 5 sentences from the evalua-
tion set, for every pair of mixed speakers. We report averaged
metrics over the total 140 speech separation tasks.

We learn models with the sparsity parameter λ rang-
ing within {0, 10−4, 10−3, 10−2.5, 10−2, 10−1.5, 10−1}. The
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SNRMEL

H
HHHHK

λ
0 0.0001 0.001 0.01 0.1

D
N

M
F 70 4.84 4.69 4.70 5.07 5.28

140 5.43 5.43 5.40 5.44 5.72
280 6.03 6.08 6.05 6.19 6.44
560 6.51 6.43 6.41 6.52 6.71

SN
M

F 70 4.42 4.42 4.42 4.59 4.91
140 4.56 4.55 4.61 5.13 5.69
280 5.30 5.30 5.31 5.67 5.80
560 5.68 5.68 5.76 6.02 5.99

SNRWAV

D
N

M
F 70 4.49 4.46 4.39 4.51 4.76

140 4.54 4.53 4.53 4.67 4.93
280 4.71 4.67 4.72 4.76 5.08
560 4.82 4.76 4.83 4.87 5.16

SN
M

F 70 4.29 4.29 4.30 4.39 4.71
140 4.25 4.25 4.27 4.48 4.87
280 4.41 4.41 4.44 4.64 4.91
560 4.52 4.52 4.58 4.72 5.01

Table 1. Contrast DNMF to SNMF in average signal-to-noise
ratio computed on both mel-spectra and speech waveforms.

number of basis vectors K ranges within {70, 140, 280, 560}.

4.2. Contrast DNMF to NMF and SNMF

Table 1 displays two SNR metrics for a few representative λ.
Note that when λ = 0, SNMF reduces to the regular NMF.
We observe that in both metrics, DNMF outperforms SNMF
in almost all settings. The improvement is the most significant
in reconstructing mel-spectra, attaining relatively 11.5%.

Another trend is that both SNMF and DNMF improve as
λ increases. This is demonstrated in Fig. 1 where K is set to
560. SNMF seems to benefit more from a stronger sparse reg-
ularization (corresponding to a larger λ). However, as pointed
in [4], too much sparsity does not lead to useful basis vectors.
Thus, we follow the same advice by letting λ ≤ 0.1.

4.3. Sex difference

It is also insightful to understand on which aspect DNMF im-
proves the most than SNMF. To this end, we compare the
two methods under two different settings in Table 2: mixing
speakers of the same sex (SS) , or of opposite sexes (OS).

Note that DNMF improves over SNMF much more when
mixing speakers of the same sex. The relative improvement
is around 14%, while on opposite sex, the improvement is
around 8.7%. This supports our intuition: for signals from
the opposite sexes, the basis vectors from one speaker are
unlikely to be able to model the other speaker well. Thus,
discriminative training does not help much. On the other end,

Fig. 1. Contrast DNMF to SNMF in SNRMEL under different
sparsity regularization strength. K = 560.

for mixed signals from the same sex, the basis vectors from
two different speakers are likely to be able to model the other
well. Thus, discriminative training is able to prevent basis
vectors from generalizing too much (across speakers).

λ 0 0.0001 0.001 0.01 0.1

DNMF SS 4.79 4.77 4.71 4.91 5.28
SNMF SS 4.31 4.30 4.34 4.50 4.63
DNMF OS 7.80 7.67 7.68 7.72 7.78
SNMF OS 6.71 6.71 6.83 7.16 7.02

Table 2. SNRMEL of DNMF and SNMF under different setting
of mixing speakers. SS: same sex, OS: opposite sex. K =
560.

5. CONCLUSIONS

We have developed a new method for discriminative learn-
ing of NMF for speech separation. The key idea is to learn
speaker-specific basis vectors jointly, in contrast to the stan-
dard approach of learning them independently. The discrim-
inative learned basis vectors are capable of reconstructing
signals when they are clean and when they are mixed with
interfering ones. Empirical studies validate our approach,
which outperforms baselines of other NMF methods by a
large margin of improvement in signal-noise-ratio. We plan
to investigate alternative discriminative learning criteria and
algorithms in the future.
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