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ABSTRACT

We propose a novel staged hybrid model for emotion detec-
tion in speech. Hybrid models exploit the strength of dis-
criminative classifiers along with the representational power
of generative models. Discriminative classifiers have been
shown to achieve higher performances than the correspond-
ing generative likelihood-based classifiers. On the other
hand, generative models learn a rich informative representa-
tions. Our proposed hybrid model consists of a generative
model, which is used for unsupervised representation learn-
ing of short term temporal phenomena and a discriminative
model, which is used for event detection and classification of
long range temporal dynamics. We evaluate our approach on
multiple audio-visual datasets (AVEC, VAM, and SPD) and
demonstrate its superiority compared to the state-of-the-art.

Index Terms— Emotion Recognition; Deep Networks;
Hybrid Models; CRF; CRBMs

1. INTRODUCTION

Detecting the emotional content in human speech is an im-
portant problem and has several interesting applications. Ex-
ample applications include - use in tutoring systems to detect
student state [1]; identifying distressed phone calls automat-
ically [2]. However, recognizing emotions from speech is a
very challenging problem, primarily because different people
express emotions in different ways. Moreover, a lot of the
emotional content in speech is contained in the form of lan-
guage and when this linguistic content is removed, the “par-
alinguistic” problem becomes challenging even for humans
(e.g. recognizing the emotions from speech content in a lan-
guage one does not understand) [3].

A standard approach to solving this problem involves
extracting framewise low-level descriptors (LLDs) from the
audio signal and then using functional features to aggre-
gate these features over the utterance level [1, 4]. A major
drawback of these approaches is that they ignore the tem-
poral dynamics of the phenomena both within and across
utterances. While there has been some work on modeling
the temporal dynamics of affect across utterances [5, 6] and
within utterances [7], we show that modeling the multi-scale
temporal dynamics leads to significant performance gains.
Furthermore, we demonstrate that, starting from low level
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features such as spectrograms, deep temporal models can
learn a rich and representative feature space which often
outperforms hand-crafted features.

There are two key contributions of our work. First, we
propose a hybrid model that consists of a temporal generative
model that learns a rich and compact feature representation
capable of encoding a variety of low level concepts and a dis-
criminative model for high level reasoning. Secondly, we col-
lect and report recognition results on a new dataset collected
in a noisy environment.
Paper organization: Sec. 2 reviews prior work. Sec. 3 de-
fines our model. Sec. 4 specifies our inference and learning
algorithms. Sec. 5 compares our approach against the state-
of-the art, followed by the conclusion in sec. 6.

2. PRIOR WORK

Most work on signal processing addressed the problem of
event detection in speech using shallow models such as Gaus-
sian Mixture Models [8], Dynamic Bayesian Networks, Con-
ditional Random Fields [5, 6], and Support Vector Machines
[4]. Even though the aforementioned models achieved good
results, they are not expressive enough to capture higher level
dynamics and semantics. A common approach for increas-
ing the expressivity of the models is to use deep architec-
tures. Many recent works on vision, speech, natural language
processing use hierarchical deep networks to encode the data
structure. In our work we focus on non-linear deep networks
such as Deep Boltzmann Machines [9] and Neural Networks
[10]. These models are known for their strong representa-
tional power and have been successfully used for many prob-
lems.

Deep Networks have been successfully used for audio
analysis, speech recognition, and natural language process-
ing [11]. Non-linear deep networks such as Boltzmann Ma-
chines [9] and Neural Networks [10] have the ability to learn
a rich feature representation in an unsupervised manner, mak-
ing them very powerful. Restricted Boltzmann Machines
(RBMs) form the building blocks of deep networks models.
These models are trained using the Contrastive Divergence
(CD) algorithm, which enables deep networks to capture the
distributions over the features efficiently and to learn complex
representations [13]. RBMs can be stacked together to form
deeper networks known as Deep Belief Networks (DBNs),
which capture more complex representations. Recently, deep
networks were successfully used for the problem of mul-
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timodal event detection [14], and for Multimodal emotion
recognition [15]. However, unlike our proposed approach,
these approaches do not explicitly account for the temporal
nature of the data.

Temporal Deep Networks are capable of capturing the rep-
resentation of a more temporally rich set of problems. Tem-
poral Deep Networks include Conditional RBMs (CRBMs)
[16], and Temporal RBMs (TRBMs) [17]. CRBMs and
TRBMs have been successfully used in the audio domain,
for example, phone recognition [18], and polyphonic music
generation [19]. Recently, Deep Stacking Networks [20], a
special type of deep model equipped with parallel and scal-
able learning, have been successfully used for frame-level
phone classification [21], phone recognition, and information
retrieval [10].

Deep Architectures can be divided into three groups, gen-
erative, discriminative, or hybrid models [11]. In hybrid
architectures, the goal is discrimination, which is assisted
with the outcomes of generative architectures via better op-
timization or/and regularization, combining the advantages
of generative and discriminative models. Hybrid architec-
tures have been successfully used in speech recognition and
natural language processing [10, 22, 23]. The learning of
the hybrid model parameters could be done in three ways:
staged [24]; iterative [25]; joint [26]. The staged learning al-
lows scalable learning of the model parameters. In our case,
we use a staged hybrid architecture, where the generative
part (CRBM) captures short term (intra-utterance) dynamics,
while the discriminative part (CRF) captures the long term
(inter-utterance) correlations. We have recently proposed a
similar hybrid model for the problem of multi-modal event
detection [27].

In this paper we evaluate the model for speech analysis on
challenging audio datasets, especially in the context of inter-
utterance and intra-utterance temporal dynamics. In the next
section, we formulate our Hybrid model using a combination
of a CRBM and a CRF.

3. THE HYBRID MODEL

The hybrid model allows us to combine the advantages of
generative as well as discriminative models leading to a
stronger classifier compared to purely generative models. Let
yt be the multi-class label vector at time t, vt is the vector
of raw features at time t, and ht is a vector of the latent hid-
den variables. v<t is the concatenated history vector of the
visible. We define our hybrid model as:

p(yt,vt,ht|v<t)︸ ︷︷ ︸
Hybrid

= pD(yt|ht)︸ ︷︷ ︸
Discriminative

· pG(vt,ht|v<t)︸ ︷︷ ︸
Generative

. (1)

Our hybrid model p(yt,vt,ht|v<t) shown in (1) consists of
two terms, a generative term pG(vt,ht|v<t), and a discrimi-
native term pD(yt|ht,vt). Fig. 1(b) shows an illustration of
our hybrid model. In the following subsections, we first spec-
ify our generative CRBM model, followed by the discrimina-
tive CRF model.

Fig. 1. (a) shows the CRBM model, where v are the visible
nodes, h are the hidden nodes. (b) shows our hybrid model
(CRF-CRBM), with a per frame label y.

3.1. The Conditional Restricted Boltzmann Machines

CRBM defines a probability distribution pG(vt,ht|v<t) as a
Gibbs distribution. Let v be a vector of visible nodes and h a
vector of hidden nodes. The CRBM architecture is defined as
fully connected between layers, with no lateral connections.
This architecture implies that v and h are factorial given one
of the two vectors. This allows for the exact computation
of p(v|h) and p(h|v). CRBMs takes into account history
from the previous time instances [(t − N), . . . , (t − 1)] at
time (t). This is done by treating the previous time instances
as additional inputs. The additional inputs from previous time
instances are modeled as directed autoregressive edges from
the pastN visible nodes and the pastM hidden nodes, where,
N does not have to be equal to M . The concatenated history
vector is defined as v<t. Fig. 1(a) shows an illustration of our
CRBM model. Doing so does not complicate inference1.

We define our generative CRBM as:

pG(vt,ht|v<t;θG) = exp[−EG(vt,ht|v<t;θG)]/Z(θG),

EG(vt,ht|v<t;θG) = −
∑

i(ci,t − vi,t)2/2
−
∑

j dj,thj,t −
∑

i,j vi,twi,jhj,t,

Z(θG) =
∑

v,h exp[−EG(vt,ht|v<t;θG)]
θG = {a,b,A,B ,W },

(2)

where ci,t = ai,t +
∑

nAn,ivn,<t and dj,t = bj,t +∑
mBm,jvm,<t and A and B are matrices of concatenated

vectors of previous time instances of a and b.
Since our data is continuous, we define p(vi|h) as a mul-

tivariate Gaussian distribution with zero mean and unit co-
variance p(vi|h) = N (ai +

∑
j hjwij , 1). The conditional

p(hj = 1|v) is defined as a logistic function p(hj = 1|v) =
σ(bj +

∑
i viwij)

2, since we want the hidden layer to be bi-
nary (empirically proven to be better [16]).

The parameters of our generative model θG are {a,A}
and {b,B} the the biases for v and h respectively and the
network weights’ {W }.

1Some approximations have been made to facilitate efficient training and
inference, more details are available in [16].

2The logistic function σ(·) for a variable x is defined as σ(x) = (1 +
exp(−x))−1.
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3.2. Conditional Random Fields

The CRBMs are very effective for learning and represent-
ing short term temporal phenomena. In our problem we also
need to model long range temporal dynamics. With this re-
quirement in mind, we choose Conditional Random Fields
(CRFs) [28] as our discriminative model. Let yt be the label
of the sequence at time t and ht to be the output of the CRBM
(2), which serves as an input to the CRF as shown in Fig. 1(b),
f1j is a transition feature function, f2k is a state feature func-
tion, with ω1

j the transition component of the parameters and
ω2
k the state component of the parameters, and Z is the parti-

tion function to ensure the proper normalization of the model.
Our discriminative term, modeled by pD(yt|ht;θD) is defined
as:

pD(yt|ht;θD) = exp[ED(yt|ht;θD)]/Z(θD),

ED(yt|ht;θD) =
∑

j ω
1
j f

1
j (yt−1,yt,ht)

+
∑

k ω
2
kf

2
k (yt,ht),

Z(θD) =
∑

y ED(y|ht;θD), θD = {ω1,ω2}.

(3)

In the following section we specify our inference and learning
algorithms.

4. INFERENCE AND LEARNING

Inference on a CRBM is not much different from that on a
RBM. The hidden nodes at time (t) are conditionally indepen-
dent given data at previous time instances [(t−N), . . . , (t−
1)]. Inference is done in a layer-wise manner by activating
a hidden layer given the visible layer using the conditional
independence advantage of the CRBM model p(hj = 1|v).
Given a new observation sequence ht and model parameters
θ obtained during training, our goal is to predict the label ŷt.
This can be computed by maximizing over all labels as fol-
lows:

ŷt = arg max
y

pD(yt|ht;θD). (4)

Note that the CRF model assigns a label to each node of the
sequence.
Learning the RBM parameters using maximum likelihood
learning is quite slow. However, learning can be significantly
speeded up if we approximately follow the gradient of another
function, in this case Contrastive Divergence (CD) [29]. The
learning rules are derived using CD, where 〈·〉data is the ex-
pectation with respect to the data distribution and 〈·〉recon is
the expectation with respect to the reconstructed data. The re-
construction is generated by first sampling p(hj = 1|v) for all
the hidden nodes in parallel. The visible nodes are then gener-
ated by sampling p(vi|h) for all the visible nodes in parallel.

∆wi,j ∝ 〈vihj〉data − 〈vihj〉recon,
∆ai ∝ 〈vi〉data − 〈vi〉recon,
∆bj ∝ 〈hj〉data − 〈hj〉recon,

∆Ak,i,t−n ∝ vk,t−n(〈vi,t〉data − 〈vi,t〉recon),
∆Bi,j,t−m ∝ vi,t−m(〈hj,t〉data − 〈hj,t〉recon).

(5)

The update equations of the dynamically changing bases
∆c and ∆d are obtained by first updating ∆Ak,i,t−q and
∆Bi,j,t−q and then combining them with ∆ai,t and ∆bj,t.
The discriminative learning is done by maximum likelihood
estimation of θD in (3) using [30].

5. EXPERIMENTS

For evaluating the performance of our approach, we compare
the performance of different combinations of hybrid mod-
els SVM-RBM, CRF-RBM, SVM-CRBM, and CRF-CRBM
(Fig. 1) against models trained on the raw features, which
demonstrates the importance of the generative model with and
without temporal modeling. Furthermore, we compare our
approach against the state-of-the-art on multiple datasets.
Datasets and Implementation Details: We evaluate our
model on three different datasets. Each dataset contains
audio data. For one of the datasets we use hand-crafted (pre-
defined) features, while for the remaining two datasets we
rely on raw features (audio spectrograms). Our experiments
shows that we can learn good feature representations from
CRBMs using both hand-crafted as well as raw features.

AVEC [4] is an audio-visual dataset for single person af-
fect analysis. The dataset involves users interacting with emo-
tionally stereotyped virtual characters operated by a human.
The dataset has been annotated with binary labels for four dif-
ferent affective dimensions - Activation, Expectation, Power
and Valence. The dataset is divided into two sets, 31 se-
quences for training and 32 sequences for testing. The dataset
comes with pre-computed audio and video features; refer to
[4] for details. For the purposes of our experiments, we focus
on the Audio Subchallenge which uses the audio features ex-
clusively. We apply PCA on the extracted features and reduce
each of the audio features to 100 dimensions. We choose a
CRBM with a temporal order N = 8, with the first hidden
layer being over-complete, consisting of 150 nodes. We use
the AVEC dataset to compare against [5, 6, 8].

VAM: The Vera-Am-Mittag (VAM) corpus [31] consists
of recordings taken from a talk show. The corpus contains
audio-visual data from spontaneous and unstaged discussions
between the guests of the talk show. The audio recordings
were manually segmented to the utterance level and each
utterance has been labeled with three emotion primitives:
Valence, Activation and Dominance, on a continuous valued
scale by multiple human annotators. Here again we use only
the audio data for recognizing emotions. From the audio
clips, we extract the spectrogram using OpenSMILE [32]
and simply use the spectrogram as our feature. We choose
a CRBM with a temporal order N = 8, with the first hidden
layer being over-complete, consisting of 100 nodes.

SPD: We collected the Seattle Police Database (SPD),
which contains audio recordings of police-civilian interac-
tions. Unlike AVEC and VAM, the SPD has been recorded in
“in the wild” and hence contains a considerable amount of
noise. The recordings were segmented to an utterance level
and were annotated by multiple annotators as belonging to
four different categories: calm, slightly-agitated, agitated and
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extremely-agitated. Here again we use a spectrogram as our
feature vector and use a CRBM with a temporal order N = 8,
with the first hidden layer being over-complete, consisting of
100 nodes.
Results: Table 1 shows results on AVEC dataset. We report
the weighted average classification accuracy of each of the
four affective labels as well as the mean classification accu-
racy on the Audio Subchallenge. We use the training set for
learning the classifier and report the results on the develop-
ment set. We compare our approach against the baseline [4],
as well as previously published results on this dataset [5, 6, 8]
and we can see that our approach performs favorably com-
pared to the state-of-the-art.

Table 2 shows the classification results on the VAM
dataset. We use Leave-One-Speakers-Group-Out (LOSGO)
cross-validation as in [3, 7] and compare the unweighted
Accuracy. Our results are comparable to [3, 7] despite the
fact that we use a spectrogram as our feature vector, while
both [3, 7] use a hand-crafted 6552 dimensional feature vec-
tor. Moreover, we can also see that deep learning {SVM-
RBM, SVM-CRBM, CRF-RBM, CRF-CRBM} significantly
improves performance over the raw features {(SVM-RAW,
CRF-RAW)}.

Table 3 shows the classification results on the SPD
dataset. The dataset consists of 4 different classes: Neu-
tral(N), Slightly Agitated (SA), Agitated (A) and Extremely
Agitated (EA) and contains 1072 samples - 421(N), 391(SA),
226(A), 34(EA). We divide the dataset into training and test
sets consisting of about 50% of the total data and compare
the mean classification accuracy on the test set in 6 different
scenarios. The first five scenarios are binary classification
problems - T1: Neutral as one class vs Slightly Agitated, Ag-
itated and Extremely Agitated as the other class, T2: Neutral
as one class vs Agitated and Extremely Agitated as the other
class, T3: N vs SA, T4: N vs A, T5: N vs EA. The sixth
scenario T6, is a multi-class classification problem. From the
results we can see that it is easier to distinguish between the
more extreme classes and the performance goes down when
Slightly Agitated is added. Here again we can see that Deep
Learning results in an increased performance compared to
raw features.
Discussion: In AVEC, the CRF-CRBM model gives the best
performance. This is due to the presence of long term dy-
namics justifying the use of CRF model. In VAM and SPD,
using deep learning improves the overall feature representa-
tion (short term dynamics), but due to the lack of long term
dynamics, an SVM classifier is sufficient to capture the emo-
tions.

6. CONCLUSION

We have proposed a hybrid model comprising of temporal
generative and discriminative models for detection and recog-
nition of emotional content in speech. We employ a deep
networks based temporal generative model which enables us
to learn a rich feature representation to model the short term
(intra-utterance) temporal characteristics. The discriminative

Model A E P V Mean
baseline [4] 63.7 63.2 65.6 58.1 62.6
HMM [8] 66.9 62.9 63.2 65.7 64.6
LDCRF [5] 74.9 68.4 67.0 63.7 68.5
HCRF [6] 73.4 65.5 68.7 70.0 69.4
SVM-RAW (ours) 63.7 63.2 65.6 58.1 64.8
CRF-RAW (ours) 76.9 65.5 68.7 61.7 68.1
SVM-RBM (ours) 62.1 63.0 64.0 58.3 61.8
CRF-RBM (ours) 73.2 67.7 68.3 61.1 67.6
SVM-CRBM (ours) 67.0 67.6 65.2 63.3 65.8
CRF-CRBM (ours) 72.3 69.2 70.5 65.3 69.2

Table 1. Classification accuracy (in %) on the AVEC dataset.

Model A P V Mean
HMM/GMM-RAW [7] 76.5 N.A. 49.2 N.A.
GerDA-RAW [3] 78.4 N.A. 52.4 N.A.
SVM-RAW [3] 72.1 N.A. 48.1 N.A.
CRF-RAW (ours) 71.0 69.5 50.0 63.5
SVM-RBM (ours) 76.2 72.7 50.0 66.3
CRF-RBM (ours) 74.7 70.5 50.0 65.0
SVM-CRBM (ours) 75.1 72.3 50.0 65.8
CRF-CRBM (ours) 73.8 70.0 50.0 64.6

Table 2. Classification accuracy (in %) on the VAM dataset.

Model/ SVM- CRF- SVM- CRF- SVM- CRF-
Scenario RAW RAW RBM RBM CRBM CRBM
T1 63.5 72.8 72.8 75.3 71.5 73.8
T2 81.5 83.5 81.2 85.6 83.3 83.7
T3 59.5 63.4 63.9 64.9 65.9 62.8
T4 82.1 81.6 82.1 79.7 82.4 78.1
T5 95.2 97.1 97.4 95.9 96.5 85.1
T6 51.6 52.2 52.3 52.6 53.8 51.9
Mean 72.2 75.1 75.0 75.6 75.6 72.6

Table 3. Classification results (in %) on the SPD dataset.

component of our model consists of a CRF, which enables
modeling long range (inter-utterance) temporal dependencies
leading to a superior classification performance. An extensive
experimental evaluation on three different datasets demon-
strates the superiority of our approach over the state-of-the-
art.

Acknowledgement:
This work was supported by The Defense Advanced Research
Projects Agency under Army Research Office Contract Num-
ber W911NF-12-C-0001. The views, opinions, and/or find-
ings contained in this paper are those of the author and should
not be interpreted as representing the official views or poli-
cies, either expressed or implied, of the DARPA or the DoD.

3755



7. REFERENCES

[1] D. Litman and K. Forbes, “Recognizing emotions from
student speech in tutoring dialogues,” in ASRU, 2003.

[2] P. Belin, S. Fillion-Bilodeau, and F. Gosselin, “The
montreal affective voices: a validated set of nonverbal
affect bursts for research on auditory affective process-
ing,” in Behavior Research Methods, 2008.

[3] A. Stuhlsatz, C. Meyer, F. Eyben, T. ZieIke, G. Meier,
and B. Schuller, “Deep neural networks for acous-
tic emotion recognition: Raising the benchmarks,” in
ICASSP, 2011.

[4] B. Schuller and et al., “Avec 2011 -the first international
audio visual emotion challenge,” in ACII, 2011.

[5] G. Ramirez, T. Baltrusaitis, and L. P. Morency, “Model-
ing latent discriminative dynamic of multi-dimensional
affective signals,” in ACII, 2011.

[6] B. Siddiquie, S. Khan, A. Divakaran, and H. Sawh-
ney, “Affect analysis in natural human interactions using
joint hidden conditional random fields,” in ICME, 2013.

[7] Bjorn Schuller, Bogdan Vlasenko, Florian Eyben, Ger-
hard Rigoll, and Andreas Wendemuth, “Acoustic emo-
tion recognition: A benchmark comparison of perfor-
mances,” in ASRU, 2009.

[8] M. Glodek and et al., “Multiple classifier systems for
the classification of audio-visual emotional states,” in
ACII, 2011.

[9] Y. Bengio, “Learning deep architectures for ai,” in
FTML, 2009.

[10] L. Deng, G. Hinton, and B. Kingsbury, “New types of
deep neural network leaning for speech recognition and
related applications: An overview,” in ICASSP, 2013.

[11] L. Deng and D. Yu, “Deep learning for signal and infor-
mation processing,” in FTML, 2013.

[12] L. Zhu, Y. H. Chen, and A. Yuille, “Recursive compo-
sitional models for computer vision,” Journal of Math-
ematical Imaging and Vision, 2011.

[13] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learn-
ing algorithm for deep belief nets,” in NC, 2006.

[14] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A.Y.
Ng, “Multimodal deep learning,” in ICML, 2011.

[15] Yelin Kim, Honglak Lee, and Emily Mower Provost,
“Deep learning for robust feature generation in audio-
visual emotion recognition,” in ICASSP, 2013.

[16] G. W. Taylor and et. al., “Modeling human motion using
binary latent variables,” in NIPS, 2007.

[17] I. Sutskever and G. E. Hinton, “Learning multi-
level distributed representations for high-dimensional
sequences,” in AISTATS, 2007.

[18] A. R. Mohamed and G. E. Hinton, “Phone recognition
using restricted boltzmann machines,” in ICASSP, 2009.

[19] N. B. Lewandowski, Y. Bengio, and P. Vincent, “Mod-
eling temporal dependencies in high-dimensional se-
quences: Application to polyphonic music generation
and transcription,” in ICML, 2012.

[20] L. Deng, D. Yu, and J. Platt, “Scalable stacking and
learning for building deep architectures,” in Interspeech,
2012.

[21] B. Hutchinson, L. Deng, and D. Yu, “Tensor deep stack-
ing networks,” in TPAMI, 2013.

[22] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large
vocabulary speech recognition,” in ICASSP, 2012.

[23] F. Seide, G. Li, and D. Yu, “Conversational speech
transcription using context-dependent deep neural net-
works,” in Interspeech, 2011.

[24] N. Smith and M. Gales, “Speech recognition using
svms,” in NIPS, 2002.

[25] A. Fujino, N. Ueda, and K. Saito, “Semi-supervised
learning for a hybrid generative/discriminative classifier
based on the maximum entropy principle,” in TPAMI,
2008.

[26] H. Larochelle and Y. Bengio, “Classification using dis-
criminative restricted boltzmann machines,” in ICML,
2008.

[27] M. R. Amer, B. Siddiquie, S. Khan, A. Divakaran, and
H. Sawhney, “Multimodal fusion using dynamic hybrid
models,” in WACV, 2014.

[28] J. Lafferty, A. McCallum, and F. Pereira, “Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data,” in ICML, 2001.

[29] G. E. Hinton, “Training products of experts by minimiz-
ing contrastive divergence,” in NC, 2002.

[30] Mark Schmidt, “Ugm: Matlab code for undirected
graphical models,” 2012.

[31] M. Grimm, K. Kroschel, and S. Narayanan, “The
vera am mittag german audio-visual emotional speech
database,” in ICME, 2008.

[32] Florian Eyben, Martin Wollmer, and Bjorn Schuller,
“opensmile: The munich versatile and fast open-source
audio feature extractor,” in ACM MM, 2010.

3756


