
PATTERN DISCOVERY IN CONTINUOUS SPEECH
USING BLOCK DIAGONAL INFINITE HMM

Niklas Vanhainen and Giampiero Salvi

KTH, Royal Institute of Technology
School of Computer Science and Communication

Department for Speech, Music and Hearing
Stockholm, Sweden

ABSTRACT

We propose the application of a recently introduced inference
method, the Block Diagonal Infinite Hidden Markov Model
(BDiHMM), to the problem of learning the topology of a
Hidden Markov Model (HMM) from continuous speech in
an unsupervised way. We test the method on the TiDigits
continuous digit database and analyse the emerging patterns
corresponding to the blocks of states inferred by the model.
We show how the complexity of these patterns increases with
the amount of observations and number of speakers. We also
show that the patterns correspond to sub-word units that con-
stitute stable and discriminative representations of the words
contained in the speech material.

Index Terms— unsupervised learning, infinite hidden
Markov model, Monte Carlo methods, automatic speech
recognition

1. INTRODUCTION

The assumption of a priori knowing the fundamental units of
speech and the way these units are combined to form larger
units such as syllables, words and phrases, is central in most
applications of speech technology. On the other hand, hu-
mans learn these units from the speech signal and the interac-
tion with their caregivers. Emulating the superior flexibility
in human learning may be beneficial to the future of speech
technology that still falls short of human performance.

In this paper we investigate a novel method for discov-
ering recurrent patterns in continuous speech. We base
our model on an extension to the Infinite Hidden Markov
Model (iHMM) [1], called Block Diagonal Infinite Hidden
Markov Model (BDiHMM) that was recently introduced in
[2, 3]. Both iHMMs and BDiHMMs attempt to learn from the
data the topology of a Hidden Markov Model (HMM) and the
number of states, that can in theory grow to infinity. Addition-
ally, the BDiHMM learns a nearly block diagonal transition
matrix, where the number of blocks and the association be-
tween blocks and states are also inferred from the data. In [3],
the authors show that the blocks resulting from this inference

roughly correspond to meaningful sub-sequences in a video
gesture classification task.

We implemented the inference for BDiHMM on the basis
of the iHMM code provided by [4]. Although the model is
strongly inspired by [2], we introduced some modifications
that are described in the paper. We tested our implementation
on a subset of the TIDigits continuous digit database [5]. We
observe that the emerging patterns usually correspond to sub-
word units. We show that the complexity and number of the
emerging patterns increases with the amount of observations.
In spite of this, the topology of the resulting sub-models form
a concise representation of different pronunciations of each
word.

1.1. Related work

Many attempts have been made to simulate the process of
learning linguistic units from speech both with the aim of im-
proving automatic speech recognition (ASR) methods as well
as simulating human language learning. These methods fo-
cus on two different, but related problems: finding sub-word
phoneme-like acoustic units in an unsupervised way, e.g., [6,
7, 8, 9, 10], and finding recurrent sequences of acoustic units
to form word candidates, e.g., [11, 12, 13, 14, 15]. We focus
here on methods that attempt to discover speech units from
the acoustic speech signal, leaving out the many attempts to
model learning in a multimodal context (e.g., [16, 17]).

In [6] the authors used a Maximum Likelihood approach
to segment recordings of isolated words. The resulting seg-
ments were then clustered and modelled with HMMs. Simi-
larly [7] proposed three methods for automatically segment-
ing the speech signal based on template matching, spectral
changes and constrained-clustering vector quantisation. A
similar method was later used in [8] to build stochastic pro-
nunciation models. In the above cases, discovering sub-word
units was performed in two stages: first segmentation and
then modelling. In [18] the problem is addressed with a
method from [19] called causal-state splitting reconstruction
(CSSR).

Focusing on the second problem of word discovery, the

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3747

method in [11] uses transitional probabilities between atomic
acoustic events in order to detect recurring patterns in speech.
The method in [12] is based on a dynamic time-warping
(DTW) algorithm that compares segments of speech from the
MIT lecture corpus. In [13], word discovery is performed
by comparing pairs of utterances with a method called DPn-
gram based on Dynamic Programming. In [14] and [15],
the problem is addressed with a specific solution to factor
analysis called Non-negative Matrix Factorisation (NMF).
Finally, in [20] we proposed an alternative solution to the
method in [14, 15] by implementing the factor analysis with
Beta-Process Factor Analysis (BPFA) [21].

The above problems are also related to the problem of
modelling out-of-vocabulary (OOV) words in ASR (e.g., [22,
23]).

Differently from most of the above studies, here we learn
recurring patterns by means of learning the topology of a
global Hidden Markov Model (HMM). This method does
not need a pre-segmentation of the speech data. Also the re-
sulting model is compatible with standard speech recognition
algorithms.

The remainder of the paper is organised as following: in
Section 2 we describe the theory and our implementation of
the BDiHMM. In Section 3 we explain the experiment details
and the data. Finally, Section 4 and 5 discuss the results and
conclude the paper.

2. METHOD

The Block Diagonal Infinite Hidden Markov Model (BDiHMM)
[2, 3] is an extension of the Infinite Hidden Markov Model
(iHMM) [1] whereby states are organized into blocks in order
to discover sub-behaviours in time-series data.

Unlike a traditional HMM, the number of states in a
iHMM is not predetermined, but is inferred from the data,
potentially approaching infinity.

With the BDiHMM, another layer is added where each
of the potentially infinite number of states is a member of a
block. The number of blocks can also potentially grow to
infinity. These blocks bind together subsets of states that can
describe local behaviours within a larger time-series, much
like how states in a traditional speech recognition HMM are
often grouped to represent phonemes.

The method, as implemented for this paper, uses the
Beam Sampling algorithm described in [4] to sample a hid-
den Markov model, and the method described in chapter 4
of [3] to sample an appropriate block configuration for this
model.

The beam sampling method was chosen due to its speed
of inference relative to the traditional approach [24], the dif-
ference being that [4] introduces a way of sampling a state-
path for the iHMM using a dynamic programming algorithm,
similarly to the way a traditional HMM is commonly trained.
Using the dynamic programming algorithm, the state path is

Fig. 1: Graphical depiction of BDiHMM model[3]

sampled as a whole rather than as many individual parameters
as would otherwise be the case with Gibbs sampling.

Both iHMMs and BDiHMMs are based on traditional
HMMs and are, therefore, defined by a transition matrix π
over a state space, prior probabilities for the initial state in the
sequence, and a set of observation probability distributions
θk for each state.

In the iHMM, the transition matrix π is described by a
Hierarchical Dirichlet Process (HDP), which allows the num-
ber of states to grow with the complexity of the data. This is
modelled as

β|γ ∼ SBP(γ) (1)
πm|α0, β ∼ DP(α0, β), (2)

where β, sampled from a stick breaking process (SBP) with
concentration parameter γ, represents a shared prior for all
the rows of the transition matrix π. The rows of π are sam-
pled from a dirichlet process such that the hyperparameter
α0 regulates the sample variance and the β prior is the base
measure, or the mean distribution. where α0 is a singleton
hyperparameter and DP is the Dirichlet Process. The other
hyperparameter β is sampled using a stick breaking process
(SBP) and represents a prior on the current states (β1...K) and
on the potentially infinitely many new states (βnew). When
a new state is generated, a value x is drawn from a Beta dis-
tribution with a hyperparameter prior of γ and βnew is split
into the prior on the new state βK+1 = xβnew and a new
β̄new = (1 − x)βnew for the future potential new states.
Similarly, if a state path is sampled where state k is no longer
present, βk will be absorbed by βnew.

In BDiHMMs an additional variable is introduced, a block
label zm for each statem. Section 2.1 describes how the block
assignment is sampled. The variable zm affects the way the
transition matrix is sampled: When a row of the transition
matrix πm is sampled, β from Eq. 1 is modified to β∗ by
Eqs. 3–4 in order to give more probability mass to transitions

3748

between states in the same block.

ξ∗mn = 1 +
δ(zm=zn)ξ∑
K βkδ(zm=zk)

(3)

β∗mn = 1
1+ξβnξ

∗
mn (4)

πm|α0, β
∗
m ∼ DP(α0, β

∗
m) (5)

ξ is a singleton hyperparameter regulating the amount of
extra weight given to within-block transitions.

2.1. Sampling of block labels

In [2], a block sampler is described which defines the prob-
ability that each state belongs to a certain block. The author
proposes a solution to the high computational cost of sam-
pling each block label independently when the number of
states and blocks is large. The solution bonds together states
that, in the current iteration, possess the same block label and
that share many mutual transitions. Then it samples the block
labels of these bonded sets together.

We chose to implement the second bonding scheme de-
scribed in chapter 4 of [2], in which a bonding probability and
a decay factor are drawn from beta distributions in each iter-
ation. In each iteration, all the states start as unbonded, and
for each set to bond, a random state is chosen as a seed from
states that have not yet had the chance to bond. Given this
seed state, bonds to other states are then sampled, given the
number of transitions between the pair states in the inferred
state sequence ν and the bonding probability. Any state which
is bonded with the seed state may then in turn be bonded with
additional states, but the bonding probability is reduced for
each new bond in order to avoid too many states from being
bonded into a single set, which would prevent different block
configurations from being sampled.

Once the states have been bonded into sets, we sample
the block labels once for each bonded set. That is, we define
a new block assignment variable z′ that is shared among all
states bonded in the same set. If cmn is the number of transi-
tions between state m and state n in the inferred state path ν
and defining M as the set of pairs m,n where cmn > 0, the
probability of this new configuration of block labels may then
be expressed as

Pj =

K∏
k=1

ρz′k +
∏

m,n∈M

Γ(cmn − 1 + α0β
∗
n)

Γ(α0β∗n)
,

where ρ is the prior on the infinite number of block labels,
and is constructed using a stick breaking process much like β.
One difference from [2] is that we replaced τ , which depends
on the previously sampled bonding probability, with cmn in
the above expression, this because we found the sampling of
block labels to be more stable and predictable using cmn.

For each set of states, a block label is sampled from a
multinomial probability distribution.

3. EXPERIMENTS

The experiments performed in this study involve both artifi-
cially generated data and a subset of the TiDigits[5] corpus.

3.1. Artificial data

To test our implementation of the BDiHMM we ran some test
using artificially generated data. Given the “true” number of
states and blocks, we first randomly generated the model pa-
rameters of a discrete HMM were transitions between states
belonging to the same block were given extra weight. Then,
we observed that the algorithm, in the majority of cases, was
able to recover the correct number of states and blocks based
on data generated from the HMM. For lack of space the re-
sults of these simulations are not reported in this paper.

3.2. TiDigts

These experiments were performed on a subset of the TiDig-
its database. The speech representation is based on Vector
Quantisation of MFCC vectors computed at a rate of 10 ms
and over windows of 25 ms. The signal processing was per-
formed using the HTK toolkit [25]. The static MFCCs in-
clude the 0th coefficient and Cepstral mean subtraction was
performed. The static and dynamic MFCC coefficients were
quantised separately into three streams with codebook sizes:
100 (static MFCCs), 50 (first order derivatives) and 25 (sec-
ond order derivatives).

Those three streams of discrete VQ centroids were mod-
elled using three independent multinomial distributions as ob-
servation probability distributions for each state (θk, see also
Section 2).

In order to test the behaviour of the algorithm with vary-
ing amounts of speech data, we run the tests on 1, 5 and 10
speakers from the training set of the database. The evalua-
tion of the method is based on measures of similarity of the
emerging representations for different utterances (pronuncia-
tions) of the same words. In order to perform this evaluation,
we annotated the material from one speaker at the word level.
The word boundaries were not used by the method, but only
in the evaluation phase.

4. RESULTS

The results obtained on the speech data from the TiDigits
database are illustrated in Table 1 and Figure 3. Table 1 shows
global parameters of the model for varying amounts of train-
ing data (speakers). In general, the model complexity grows
with the amount of data, as expected. As can be seen in the
table, the number of states grows nearly logaritmically with
the training data. The number of blocks, however, grows at a
much slower rate.

Figure 3 shows the transition probabilities for the three
models trained. Log probabilities were used in the plots to

3749

(a) 1 speaker (125 states, 6 blocks) (b) 5 speakers (297 states, 9 blocks) (c) 10 speakers (323 states, 9 blocks)

Fig. 3: Transition matrices of the inferred models, sorted by block, log probabilities

speakers # iterations # states # blocks average (std) average (std) edit distance
blocks/word within word between words

1 1500 125 6 2.25 (0.99) 0.71 (0.64) 2.02 (0.95)
5 2500 297 9 2.93 (1.59) 0.89 (0.89) 3.38 (1.15)

10 1500 323 9 3.95 (1.94) 1.91 (1.64) 4.45 (1.46)

Table 1: Global model parameters and analysis of block representations of words

fr
e
q
.
(k

H
z
)

spectrogram

0

5

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

time (sec)

b
lo

c
k
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

200

400

s
ta

te
s

Fig. 2: Top: Spectrogram of the sentence 22a (“two two”)
spoken by TiDigits speaker cb. Bottom: block and state labels
generated by the model trained on 10 speakers

make the block structure, that the method infers from the data,
stand out. It is evident that the number of states per block
becomes more even as the amount of training data increases.
This is also reflected in the use of each block by the model. In
the leftmost model, trained on only one speaker, some of the
blocks are seldom used, whereas, in the other two models, all
blocks are employed to represent particular segments of the
speech signal.

Table 1 also reports the average length of the pronunci-
ation of each word in terms of blocks and the Levenshtein
(edit) distance between different pronunciations within and
between words. As can be seen, the within word edit dis-
tances are much lower than the between word distances. The
latter approach the length of the pronunciations in terms of
blocks, indicating that the block representation automatically
inferred by the model may be a stable and discriminative rep-

resentation of words for this data set.
Figure 2 shows an example extracted from the database.

The top plot depicts the spectrogram of the utterance “22a”
spoken by speaker “cb”. The utterance contains, besides some
impulsive noise at the beginning, the utterance “two two”.
The bottom plot shows the evolution of the state and block
labels as predicted by the model. This plot shows that, in
spite of the fact that the state labels can vary for the two pro-
nunciations of the word “two”, the sequence of block labels
is much more consistent.

5. CONCLUSIONS

In this paper we describe the implementation and applica-
tion to speech of a recently proposed method for inferring the
topology of a nearly block diagonal hidden Markov model
from the data. We tested the method on a data set containing
continuously spoken digits and show that the topology of the
resulting model is consistent with linguistic interpretations of
the data. In particular, the blocks that emerge form stable and
discriminative representations of words in this small vocabu-
lary case.

Future work could include testing if this model is suitable
for automatic speech recognition. In order to do this, it is
necessary to optimise the implementation to make it possible
test the method on larger amounts of data. Another interesting
possibility is to modify the block probability function to better
suit the data found in speech by encouraging a stronger left-
to-right pattern within the blocks.

Another interesting development would be to perform the
inference in a hierarchical way in the attempt to find larger
linguistic units from the sub-word units found in this study.

3750

6. REFERENCES

[1] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, “The
infinite hidden markov model,” in Advances in neural
information processing systems, 2001, pp. 577–584.

[2] T. S. Stepleton, Toward versatile structural modification
for bayesian nonparametric time series models, Ph.D.
thesis, Carnegie Mellon University, 2010.

[3] T. S. Stepleton, Z. Ghahramani, G. J. Gordon, and
T. S. Lee, “The block diagonal infinite hidden markov
model,” in Proc of AI & Statistics, 2009, pp. 552–559.

[4] J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani,
“Beam sampling for the infinite hidden markov model,”
in Proc. of ICML. ACM, 2008, pp. 1088–1095.

[5] R. Leonard, “A database for speaker-independent digit
recognition,” in Proc. IEEE ICASSP, mar 1984, vol. 9,
pp. 328 – 331.

[6] C-H. Lee, F.K. Soong, and B-H. Juang, “A segment
model based approach to speech recognition,” in Proc.
of ICASSP, 1988, vol. 1, pp. 501–504.

[7] T. Svendsen, K.K. Paliwal, E. Harborg, and P.O. Husoy,
“An improved sub-word based speech recognizer,” in
Proc. of ICASSP, 1989, vol. 1, pp. 108–111.

[8] M. Bacchiani, M. Ostendorf, Y. Sagisaka, and K. Pali-
wal, “Design of a speech recognition system based
on acoustically derived segmental units,” in Proc. of
ICASSP, 1996, vol. 1, pp. 443–446.

[9] M.A.H. Huijbregts, M. McLaren, and D.A. van
Leeuwen, “Unsupervised acoustic sub-word unit detec-
tion for query-by-example spoken term detection,” in
Proc. Interspeech, 2011.

[10] P O’Grady, “Discovering speech phones using convolu-
tive non-negative matrix factorisation with a sparseness
constraint,” Neurocomputing, vol. 72, no. 1-3, pp. 88–
101, 2008.

[11] O. Räsänen, “A computational model of word segmen-
tation from continuous speech using transitional proba-
bilities of atomic acoustic events,” Cognition, vol. 120,
no. 2, pp. 149 – 176, 2011.

[12] Alex S. Park and James R. Glass, “Unsupervised pattern
discovery in speech,” IEEE Trans. Audio, Speech and
Lang. Proc., vol. 16, no. 1, 2008.

[13] G. Aimetti, R. K. Moore, and L. ten Bosch, “Discov-
ering an optimal set of minimally contrasting acoustic
speech units: A point of focus for whole-word pattern
matching,” in Proc. Interspeech, 2010, pp. 310 – 313.

[14] V. Stouten, K. Demuynck, and H. van Hamme, “Dis-
covering phone patterns in spoken utterances by non-
negative matrix factorization,” IEEE Signal Processing
Lett., vol. 15, pp. 131–134, 2008.

[15] J. Driesen, L. ten Bosch, and H. van Hamme, “Adap-
tive non-negative matrix factorization in a computa-
tional model of language acquisition,” in Proc. Inter-
speech, 2009.

[16] C. Yu, L. B. Smith, and A. F. Pereira, “Grounding word
learning in multimodal sensorimotor interaction,” in
Proc. Annual Conf. Cog. Science Soc., 2008, pp. 1017–
1022.

[17] G. Salvi, L. Montesano, A. Bernardino, and J. Santos-
Victor, “Language bootstrapping: Learning word mean-
ings from perception-action association,” IEEE Trans.
Syst., Man, and Cybern., Part B: Cybern., 2011.

[18] G. E. Hentera and B. W. Kleijn, “Picking up the pieces:
Causal states in noisy data, and how to recover them,”
Patt. Rec. Letters, vol. 34, no. 5, pp. 587–594, 2013.

[19] C. R. Shalizi and K. L. Shalizi, “Blind construction of
optimal nonlinear recursive predictors for discrete se-
quences,” in Proc. of UAI, 2004, pp. 504–511.

[20] N. Vanhainen and G. Salvi, “Word discovery with beta
process factor analysis,” in Proc. of Interspeech, Port-
land, OR, USA, Sept. 2012.

[21] J. Paisley and L. Carin, “Nonparametric factor analysis
with beta process priors,” in Proc. Annual Int. Conf. on
Machine Learning, 2009, pp. 777–784.

[22] L. Qin and A. Rudnicky, “Oov word detection using
hybrid models with mixed types of fragments,” in Proc.
of Interspeech, 2012, pp. 2450–2453.

[23] T. Mertens and S. Seneff, “Subword-based automatic
lexicon learning for speech recognition,” in Proc of
ASRU, 2011, pp. 243–248.

[24] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei,
“Hierarchical Dirichlet processes,” Journal of the Amer-
ican Statistical Association, vol. 101, no. 476, pp. 1566–
1581, 2006.

[25] “The hidden Markov model toolkit (HTK),”
http://htk.eng.cam.ac.uk.

3751

