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ABSTRACT

In this paper we propose the use of Long Short-Term Memory recur-
rent neural networks for speech enhancement. Networks are trained
to predict clean speech as well as noise features from noisy speech
features, and a magnitude domain soft mask is constructed from
these features. Extensive tests are run on 73 k noisy and reverberated
utterances from the Audio-Visual Interest Corpus of spontaneous,
emotionally colored speech, degraded by several hours of real noise
recordings comprising stationary and non-stationary sources and con-
volutive noise from the Aachen Room Impulse Response database. In
the result, the proposed method is shown to provide superior noise re-
duction at low signal-to-noise ratios while creating very little artifacts
at higher signal-to-noise ratios, thereby outperforming unsupervised
magnitude domain spectral subtraction by a large margin in terms of
source-distortion ratio.

Index Terms— Speech enhancement, speech separation, recur-
rent neural networks, Long Short-Term Memory

1. INTRODUCTION

Since audio is sequential by nature, recurrent neural networks (RNNs)
respecting temporal dynamics have emerged as a powerful tool es-
pecially for modeling of speech [1] and music [2]. In particular,
they can be used for automatic speech recognition (ASR) also in
noisy and reverberated environments [3], and to enhance corrupted
ASR features [4, 5]. The latter is an application of the de-noising
auto-encoder [6] principle, where neural networks are trained to map
noisy features to clean features. This principle has recently also been
exploited for speech enhancement in the time domain [7, 8], using
the output directly or for Wiener filtering. In this study, we introduce
the Long Short-Term Memory (LSTM) RNN architecture for speech
enhancement. Previous neural network based speech enhancement
approaches were based on feed-forward neural networks (FNNs),
despite the context-sensitive nature of speech. Furthermore, in this
paper we introduce neural network based noise modeling and com-
pare with unsupervised noise estimation as in traditional approaches
to speech enhancement [9].

In our evaluation, we aim at a challenging setting involving
stationary and non-stationary noise and various types of room re-
verberation. Since reverberation alters short- and long-term spectral
characteristics, it requires auto-encoders to generalize. Furthermore,
a crucial issue in data-based methods for speech enhancement is in-
dependence of the speaker, speaking style and acoustic condition. In
our setup we assume that the noise type and room impulse response
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during enhancement are unknown, and follow a strictly speaker-
independent setup. Furthermore, we use spontaneous and emotionally
colored speech (ranging from low to high arousal) for evaluation, cor-
responding to real-life application scenarios. Again, spontaneous and
emotional speech is arguably harder to learn for auto-encoders than
read speech due to larger variability. Finally, we are focused on low
latency real-time processing, which is possible with LSTM-RNNs
since their output is only based on the previous time step and the state
variable (cf. below).

2. RELATED WORK

Neural networks for blind non-linear source separation have been
extensively studied, e.g., in [10, 11]; however, these works fundamen-
tally differ from our approach which involves speech and noise model
training. Training of speech models for ASR feature enhancement
has been considered by [4] who use RNN autoencoders to enhance
cepstral-domain speech recognition features, but do not consider
source separation, i. e., synthesis of time-domain signals; in [5, 12]
we considered a similar approach with the LSTM architecture, which
was found superior to standard RNNs. In the context of speech en-
hancement, [7] uses deep neural networks to map noisy to clean
Mel features, but the network output is synthesized directly into a
time domain signal, instead of constructing a filter based on speech
and noise magnitudes. [8] uses a combination of unsupervised noise
estimation and DNN based speech power spectrum estimation to con-
struct a Wiener filter; however, the authors do not consider learning
based noise models. [13] considers supervisedly trained deep neural
networks to predict the ideal ratio mask in an uncertainty decoding
framework for ASR; however, the authors do not evaluate their mod-
els in terms of separation quality. Neither of the three aforementioned
studies use recurrent neural networks as proposed in this paper.

In summary this paper makes two main contributions: (a) using
recurrent memory-enhanced instead of feedforward neural networks
to model speech in a speech enhancement framework; (b) using
machine learning based methods (feedforward or recurrent neural
networks) to model noise, instead of unsupervised estimation such as
by minimum statistics.

3. METHODOLOGY

3.1. Speech Enhancement Framework

Our speech enhancement methodology is based on magnitude domain
spectral subtraction. Let X ∈ RF×T denote the magnitude spectro-
gram of a noisy speech signal with F discrete Fourier frequency bins
and T observation frames. From X, a clean speech estimate Y is
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computed through

Y = X⊗
(
1− N̂/X̂

)
(1)

where ⊗ denotes element-wise multiplication and division is also
element-wise. For traditional spectral subtraction, X̂ = X, so that
the noise estimate is subtracted from the original noisy speech. Unsu-
pervised estimation of N̂ is often done using minimum statistics [9],
which is used as a baseline method in this paper.

Data-based algorithms for speech enhancement, as proposed in
this paper, additionally use a clean speech estimate Ŝ in the above
filter, such that X̂ = Ŝ + N̂. By that, models of clean speech
and noise are fitted to the noisy speech observations in order to
predict the contribution of clean speech and noise to the observed
signal. Popular models for speech include non-negative (sparse)
coding by non-negative matrix factorization [14] or Hidden Markov
Models [15, 16]. In this paper, we propose recurrent neural network
(RNN) based modeling, using supervised training of feature mappings
similar to the de-noising auto-encoder paradigm [4,6–8]. Due to their
recent success in noise robust automatic speech recognition [3, 5]
RNNs appear to be very well suited to capture the dynamics of speech
and noise, because they directly model long-range context which
cannot be approximated by ‘feature frame stacking’ in the general
case.

In our approach, networks are pre-trained to predict speech fea-
tures from noisy speech features. As in [7] we use realistic noise
instead of white Gaussian noise for training. Similarly, we train
networks to predict noise from a convolutive mixture of speech and
noise. During speech de-noising, these estimates are used to con-
struct a magnitude domain filter as in the above equation. As features
for the neural networks, we use logarithmic Mel scale spectrograms
X′ ∈ RB×T with B = 40 frequency bands equally spaced on the
Mel frequency scale. Thus, both amplitude and frequency are on a
logarithmic scale. These features have been proven highly successful
for automatic speech recognition with deep (recurrent) neural net-
works [1]. Given predicted log Mel features of speech and noise, Ŝ′

and N̂′, the final filter equation is given by

Y = X⊗

1− M−1 exp(N̂)

M−1
(
exp(Ŝ′) + exp(N̂′

)
)

 (2)

where M−1 denotes the ‘back-transformation’ from Mel to mag-
nitude spectra and exponentiation is element-wise. By using Mel
spectra instead of magnitude or power spectra as in [8], we reduce the
amount of speech features to be estimated; by reverting the Mel scale
transformation in the filter estimation – not in the estimated speech
spectrogram – we avoid a loss of information due to the compression
of the frequency axis. We found that using the ‘ideal’ filter computed
from ‘ground truth’ speech and noise Mel spectra provided perfect
reconstruction in many cases.

Note that it is straightforward to combine unsupervised noise
estimation, e.g., by minimum statistics, with a data-based approach
for speech feature estimation – this will be evaluated later.

3.2. Deep Recurrent Neural Networks

The neural network architecture we adopt in this study is based on
Long Short-Term Memory (LSTM) deep RNNs [1]. A deep LSTM-
RNN can be described as an automaton-like structure mapping from
a sequence of observations to a sequence of output features. These
mappings are defined by activation weights and a non-linear activation

function as in a standard multi-layer perceptron. However, recurrent
connections allow to access activations from past time frames. To
solve the problem of exponential weight decay (or blowup) in the
recurrent connections, the LSTM concept introduces an internal state
variable (‘memory cell’) whose content is modified in each timestep
by so-called input and forget gates [17], instead of simply having a
recurrent connection with constant weight. In other words, memory
is modeled explicitly instead of implicitly, as in traditional RNNs.
The output of each layer of LSTM cells is determined by a non-linear
function of the cell states, scaled by the output gate. Mathematically,
the following iterative procedure is executed in an N -layer deep RNN
(n = 1, . . . , N ; t = 1, . . . , T ):

h
(0)
t := xt, (3)

c
(n)
t :=

f
(n)
t ⊗ c

(n)
t−1 + i

(n)
t ⊗ tanh

(
W(n−1),(n)h

(n−1)
t

+W(n),(n)h
(n)
t−1 + b(n)),(4)

h
(n)
t := o

(n)
t ⊗ tanh(c

(n)
t ),

ŷt := W(N),(N+1)h
(N)
t + b(N+1). (5)

In the above, h(n)
t denotes the hidden feature representation of time

frame t in the level n units. Analogously, c(n)
t , f (n)

t , i(n)
t , and o

(n)
t

denote the dynamic cell state, forget gate, input gate, and output
gate activations. W(n−1),(n) and W(n),(n) denote weight matrices
for feedforward and recurrent connections and b(n) stands for bias
vectors (with superscripts denoting layer indices). The input gate
activations i

(n)
t regulate the ‘influx’ from the feedforward and re-

current connections. f (n)
t , i(n)

t , and o
(n)
t are calculated in a similar

fashion as c(n)
t (4) – see [1] for details. The weight matrices and bias

vectors are all learnt from training sequences. In our application, xt

(3) corresponds to noisy speech features and ŷt (5) to the resulting
speech or noise estimates.

Unlike feedforward DNNs, which typically use sliding windows
of observations to provide context-sensitive, yet frame-by-frame pre-
dictions, RNNs also model dynamics of the output, which is arguably
important for speech enhancement. Despite their context-sensitive
nature, LSTM-RNNs are well suited for on-line speech enhancement
since they only require storing the current state of the automaton. In
case that real-time capability is not needed, we can also exploit future
context by adding a second set of layers which process the input fea-
ture sequences backwards, from t = T to t = 1. This extension leads
to bidirectional LSTM (BLSTM)-RNNs. In a deep BLSTM-RNN,
activations from both directions are collected in a single activation
vector before passing them on as inputs to the next layer. Details can
be found in [1].

4. EXPERIMENTAL SETUP

4.1. Noisy TUM AVIC Corpus

Our evaluation database is a noisy and reverberated version of the
TUM Audio-Visual Interest Corpus (AVIC) [18] similar to the one
used in our recent study on noise robust emotion recognition [19].
The recording scenario of TUM-AVIC consists of spontaneous dia-
logues where 21 subjects show various levels of arousal depending on
their interest in the conversation. Speech is recorded with a close-talk
microphone and down-sampled to 16 kHz for this study. As test parti-
tion, we use the one from the INTERSPEECH 2010 Paralinguistic
Challenge [20], which is balanced and stratified by gender. A random
30 % split of the Challenge training and development set is used for
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early stopping of the training algorithm (cf. below). By this partition-
ing, strict speaker independence is given (no test speaker has been
seen in training).

Realistic noise samples of three types as used in [21] serve as ad-
ditive noise: Babble noise (babble), city street noise (city), and music
(music). Babble noise recordings are samples from the freesound.org
website out of the categories pub-noise, restaurant chatter, and crowd
noise. Music recordings are instrumental and classical music from
the last.fm website. The city recordings were recorded in Munich,
Germany [22]. We use a strict, disjoint training/test split of the noise
samples. The length of the noise pool is 30 minutes per noise type in
the test set and roughly 6.5 hours in total in the training set.

Furthermore, room impulse responses (RIRs) from the Aachen
Impulse Response Database [23] were used to add convolutive noise.
We selected a few meaningful combinations of noise types and RIRs:
babble noise and lecture room, babble noise and stairway, city noise
and meeting room, and music noise and chapel (Aula Carolina), thus
representing a wide range of stationary and non-stationary additive
noises and favorable to heavily reverberated room acoustics. For each
condition, three different virtual microphone distances are employed.

Degraded speech utterances were created by first padding with si-
lence in order to allow background noise estimation, then convolving
with a RIR, normalizing to -6 dB peak amplitude, and mixing with
a randomly selected additive noise sample (respecting the train/test
split), which is convolved with the RIR (‘far’ distance) and scaled
in order to achieve a given signal to noise ratio (SNR). The test set
of each corpus is convolved with the ‘near’, ‘mid’, and ‘far’ impulse
responses and noise is added at SNRs from 0 to 20 dB in steps of
5 dB, resulting in 15 test sets for each acoustic condition, thus 60 test
sets with 73 k utterances in total. The training set has twelve times the
size of the original AVIC training set (32 k utterances) because each
utterance is included once for the 3 RIR distances and four acoustic
conditions. In the training set, noise at random SNRs (uniformly dis-
tributed on the range 0–25 dB and with 10% probability of SNR =∞)
is added. SNRs are calculated after first order high pass filtering of
speech and noise, approximating A-weighting to better match human
perception.

4.2. Network Training and Evaluation

In this study, we use a multi-condition training setup where no knowl-
edge of RIR, SNR, or noise type is assumed during enhancement. In
the scope of our evaluation, we constrain ourselves to the de-noising,
not the de-reverberation task – that is, the output of the de-noising
auto-encoders will still be reverberated. We use independent single-
task networks for prediction of either speech or noise features with
three hidden layers. Both RNNs and FNNs are considered for speech
feature estimation. FNNs and LSTM-RNNs have 256 units per layer
while BLSTM-RNNs have 128 units per direction. Feedforward
layers with 64 units are inserted after each LSTM layer in order to
perform information reduction and decrease the number of parame-
ters to learn [24]. Networks are trained on the noisy and reverberated
AVIC training set; for speech feature prediction, we use reverberated,
yet noise-free features as training targets (SNR = +∞). To prevent
over-fitting at high SNRs in training, we add Gaussian noise with
zero mean and standard deviation 0.1 to the inputs. Input and target
features are standardized to zero mean and unit variance on the train-
ing set, and delta regression coefficients of the feature contours are
added. Network training is based on the backpropagation (through
time) algorithm, which was extended to the LSTM architecture [24].
The sum of squared errors at the output layer per sequence is used
as cost function. To further alleviate over-fitting, the validation set

Table 1: Noisy AVIC corpus: Evaluation of speech enhancement by
spectral subtraction using minimum statistics (MinStat) or data-based
((B)LSTM-RNN) noise estimation; clean speech estimation using
FNN, LSTM-RNN or BLSTM-RNN.

model [dB]
speech noise SDR SIR SAR

Noisy baseline (no processing)
— 13.2 13.2 ∞

On-line Enhancement
– MinStat 8.3 17.1 10.3

FNN MinStat 11.4 15.4 16.2
LSTM-RNN MinStat 12.1 15.7 16.4
LSTM-RNN LSTM-RNN 14.6 17.0 19.7

Off-line Enhancement
BLSTM-RNN BLSTM-RNN 14.8 16.6 20.8

error is evaluated after each training epoch and training is aborted
once the validation set error has converged. Additionally, sequences
are shuffled in random order.

In all our experiments, we trained and evaluated FNNs and
LSTM-RNNs using our own open-source implementation named
CURRENNT (CUDA RecuRrEnt Neural Network Toolkit)1. CUR-
RENNT uses graphical processing units (GPUs) to speed up computa-
tion. Since in the case of RNNs, parallelization cannot be performed
across timesteps due to the temporal dependencies, it parallelizes
computations across sequences, for each timestep. This leads to a
‘semi-online’ gradient descent algorithm where the weights of the
network are updated after each batch of parallel sequences (15 in
our experiments). One BLSTM-RNN training epoch on the 32 k se-
quences, 5.8 M time steps AVIC training set (cf. above) takes around
20 minutes on a consumer grade GPU. Training a FNN for an epoch
takes only 50 sec due to an increased level of parallelization across
timesteps (using 50 parallel sequences). Depending on the task to
learn, networks took around 35–100 epochs to converge. Except for
the number of units and the FNN learning rate (reduced to 10−6 to en-
sure convergence), all chosen hyper-parameters (such as learning rate)
correspond to the regression example delivered with CURRENNT for
straightfoward reproducibility, which is based on experiments with
the CHiME Challenge data [12]. Decoding one of the 60 test sets (44
minutes of speech) in batch processing takes less than a minute on a
consumer grade GPU.

4.3. Source Separation Evaluation

After resynthesizing time-domain signals from the filtered magnitude
Fourier spectrogram Y (1, 2) by means of windowing and overlap-
add, using the noisy phase, we compute the source-to-distortions ratio
(SDR), source-to-interferences ratio (SIR), and source-to-artifacts ra-
tio (SAR) of the filtered noisy signal with respect to the original noise
free signal [25]. As baseline, we consider no processing. Further-
more, different combinations of minimum statistics (unsupervised)
and neural network based speech and noise estimates are considered.
For minimum statistics, the freely available Voicebox toolkit for MAT-
LAB is used2. We set the sliding window length for minimum statis-
tics estimation to 0.256 s (16 windows) and disabled over-subtraction
(setting the maximum subtraction factor to 1), which led to a few dB
SDR gain in a preliminary experiment.

1https://sourceforge.net/p/currennt
2http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Fig. 1: De-noising examples: Noisy test utterances (top: #4, bottom: #8) from the AVIC corpus, after processing with spectral subtraction
using a minimum statistics (MinStat) noise estimate, or LSTM-RNN speech and noise estimates, and the noise-free (‘clean’) version.
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5. EXPERIMENTAL RESULTS

Table 1 shows the average SDR, SIR, and SAR obtained on the test
set, across all acoustic conditions, input SNRs (0 to 20 dB), and noise
types. Using minimum statistics spectral subtraction, we gain about
4 dB absolute in interference reduction (SIR) at the cost of artifacts,
which lower the SDR by almost 5 dB absolute with respect to the noisy
baseline. Using a FNN or LSTM-RNN based speech estimate along
with minimum statistics noise estimation significantly increases the
SDR (by 3 and 4 dB absolute) due to an increase in SAR by about 6 dB
absolute, with respect to the minimum statistics baseline. However,
we lose around 1.5 dB absolute in interference reduction. Using a
LSTM-RNN based noise estimate in addition further boosts the SDR
to 14.6 dB and SAR to 19.7 dB while providing similar interference
reduction (SIR = 17 dB) as minimum statistics spectral subtraction.
Considering bidirectional LSTM-RNNs, a slight improvement in
SDR (+0.2 dB) can be gained at the expense of real-time capability.

Figure 2 shows the results by input SNR in more detail. It can
be seen that the SDR of the minimum statistics spectral subtraction
saturates at around 11 dB – which is due to the introduction of arti-
facts, i.e., lower SAR – while SIR increases consistently with input
SNR. However, at low SNRs (0 and 5 dB), LSTM-RNNs outperform
minimum statistics also in terms of SIR.

Finally, in Figure 1 we show the examples of speech corrupted by
city noise (clicking noise caused by a bicycle) at high SNR (20 dB),
as well speech corrupted by music noise (rock music with distorted
guitars and drums, SNR = 5 dB). In the former case, the spectro-
temporal structure of the original speech is very well reconstructed
by the LSTM-RNN approach while most of the broadband transient
interference is reduced. Minimum statistics does not remove all of the
interference while partially ‘destroying’ speech components, resulting
in some musical noise. The bottom row shows that also music noise
can be compensated by the LSTM-RNN approach to some degree;
while some harmonic interferences from the music remain in the
lower frequency bands, there is significantly less musical noise than
with minimum statistics.

Informal listening tests confirm that LSTM speech enhancement
produces naturally sounding speech, and remaining interferences also

Fig. 2: Noisy AVIC corpus: SDR and SIR by input SNR, averaged
across acoustic conditions; LSTM-RNN speech/noise model or mini-
mum statistics (MinStat) noise model.
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6. CONCLUSIONS AND OUTLOOK

We have introduced a fully data-based paradigm for real-time speech
enhancement based on deep LSTM-RNNs, outperforming unsuper-
vised speech enhancement and speech enhancement by conventional
FNNs by a large margin in terms of SDR. The proposed method intro-
duces very little artifacts while providing good interference reduction.
In the future, we might be able to improve the noise modeling by con-
sidering negative SNRs in training, i.e., data where noise is dominant.
We can also consider multi-task learning of speech and noise which
might help noise estimation at higher SNRs. Furthermore, we will
investigate stacking of auto-encoders to first remove additive, then
convolutive noise. Finally, we can apply unsupervised techniques for
further musical noise reduction such as [26].

3Audio examples will be provided at http://www.openaudio.eu upon publi-
cation of this manuscript.
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