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ABSTRACT
Sum-product networks (SPNs) are a recently proposed type of prob-
abilistic graphical models allowing complex variable interactions
while still granting efficient inference. In this paper we demonstrate
the suitability of SPNs for modeling log-spectra of speech signals
using the application of artificial bandwidth extension, i.e. artificially
replacing the high-frequency content which is lost in telephone sig-
nals. We use SPNs as observation models in hidden Markov models
(HMMs), which model the temporal evolution of log short-time
spectra. Missing frequency bins are replaced by the SPNs using
most-probable-explanation inference, where the state-dependent
reconstructions are weighted with the HMM state posterior. Ac-
cording to subjective listening and objective evaluation, our system
consistently and significantly improves the state of the art.

Index Terms— graphical models, SPN, HMM, speech band-
width extension

1. INTRODUCTION

Probabilistic graphical models (PGMs) [1, 2] enjoy great popular-
ity in the speech and signal processing communities. As an exam-
ple, hidden Markov models (HMMs) [3] are one of the most pop-
ular probabilistic models for modeling sequential data, with a vast
amount of applications, such as speech recognition/synthesis, natu-
ral language processing and bio-informatics. PGMs aim to trade-
off computational requirements of probabilistic inference and the
amount of statistical independence assumptions. However, while
most research in PGMs focuses on novel techniques for learning and
inference, application driven research usually restricts to more “sim-
plistic” models, like naive Bayes classifiers, HMMs, Gaussian mix-
ture models (GMMs), Markov random fields restricted to pair-wise
interactions, etc. The reason for this is that inference in these models
is conceptually simple and computationally tractable. The simplic-
ity of these models, however, sacrifices model-expressiveness and
possibly performance of the incorporating system.

In [4, 5, 6] and related work, novel types of probabilistic models
emerged which allow to control the inference cost during learning
but still modeling complex variable dependencies. Using the differ-
ential approach introduced in [4], inference is also conceptional easy
in these models. In this paper, we consider sum-product networks
(SPNs) introduced in [6]. SPNs can be interpreted as Bayesian net-
works with a deep hierarchical structure of latent variables with a
high degree of context-specific independence. In this way, SPNs
can model highly complex variable interactions with little or no con-
ditional independencies among the model variables. Furthermore,
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SPNs can be interpreted as a neural network representing an in-
ference machine, where inference is linear in the networks size,
i.e. in the number of nodes and edges in the network. To the best
of our knowledge, we describe the first application of SPNs to a
speech related task, namely artificial bandwidth extension (ABE) of
lowpass-filtered (telephone) speech. Motivated by the success of
SPNs on the task of image completion [6], we use SPNs to com-
plete the high frequency parts of log-spectrograms, lost due to the
telephone bandpass filter. Specifically, we use SPNs as observa-
tion models in HMMs modeling the temporal evolution of the log-
spectrum. To infer the marginal HMM state distributions we use
the forward-backward algorithm, where missing frequency bins are
marginalized by the SPN models. The high frequency bins are re-
constructed by most-probable-explanation inference [6], where the
reconstructions of the state-dependent SPNs are weighted by the
state posterior. The resulting log-spectrograms exhibit speech struc-
tures similar to the original wide-band speech, and the resynthesized
speech signals clearly exhibit an improved speech quality due to the
added high frequency content. Using log-spectral distortion as ob-
jective measure, we report consistent and significant improvement
over state-of-the-art methods.

The paper is organized as follows: In section 2 we review SPNs.
In section 3 we describe our approach for ABE using SPNs embed-
ded in an HMM. In section 4 we discusses resynthesis of time signals
from bandwidth extended log-spectrograms. In section 5 we present
our experiments and section 6 concludes the paper.

2. SUM-PRODUCT NETWORKS

Let Xm,m ∈ {1, . . .M} denote random variables and let xm be
an instantiation of Xm. We define X := {X1, . . . , XM} and x :=
{x1, . . . , xM}, and for any index set I ⊆ {1, . . . ,M} we define
XI := {Xm : m ∈ I} and xI := {xm : m ∈ I}.

An SPN is an acyclic directed graph whose internal nodes are
sum and product nodes. Each internal node recursively calculates
its value from the values of its child nodes: sum nodes calculate
a non-negatively weighted sum of the values of their child nodes,
where the non-negative weights are associated with the emanating
edges of the sum node. Product nodes calculate the product of their
child nodes’ values. While SPNs generally can have multiple roots
[7], in this paper we assume SPNs with a single root. The value of
the root node is the output of the SPN, while the input of the SPN
is provided by its leave nodes. In [6], the leaves of an SPN were
defined to be indicator nodes of discrete random variables, such that
the SPN represents the network polynomial of a Bayesian network
[4]. In [8, 7, 9] the concept of SPN leaves was generalized such that
they represent tractable distributions over single variables, or (small)
sets of variables. More precisely, when N is a leave of an SPN, then
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the value of N for some input x is N(x) := pN (xsc(N)), where the
scope sc(N) ⊆ {1, . . . ,m} are the indices of variables associated
with N , and pN is a tractable distribution over Xsc(N). pN can
either be a probability mass function (PMF) or a probability density
function (PDF). Generally, there are several leave nodes with the
same scope, representing a collection of distributions over the same
variables. This view of SPN leaves subsumes the definition using
indicator nodes in [6], since an indicator function is a special case of
a PMF, assigning all probability mass to a single state.

Concerning some internal node N , i.e. a sum or a product node,
we define sc(N) :=

∪
C∈ch(N) sc(C), where ch(N) denotes the

children of N . Let R denote the root node of the SPN, and assume
w.l.o.g. that sc(R) = {1, . . . ,M}. Then an SPN defines a probabil-
ity distribution over X as pSPN (x) ∝ R(x), i.e. by its normalized
output. In order to perform efficient inference (e.g. marginalization,
most-probable explanation, conditional marginals), an SPN should
be valid [6]. A sufficient condition for validity is when the SPN is
complete and decomposable, defined as follows [6]:

• Completeness: For any two children C,C′ of any sum node,
it must hold that sc(C) = sc(C′).

• Decomposability: For any two children C,C′ of any product
node, it must hold that sc(C) ∩ sc(C′) = ∅.

When an SPN is complete and decomposable, and when the non-
negative weights are normalized to 1 for each sum node, then the
output is already normalized and pSPN (x) = R(x). A complete
and decomposable SPN can be naturally interpreted as a recursively
defined distribution: product nodes serve as cross-overs of distribu-
tions with non-overlapping scope, representing a local independence
assumption; sum nodes represent mixtures of distributions, dissolv-
ing these independence assumptions [8, 7]. Since sum nodes repre-
sent mixtures, one can associate a latent random variable with each
sum, which opens the door for expectation-maximization algorithms
[6].

In [6], an algorithm was proposed for learning SPNs on data or-
ganized as a rectangular array (e.g. images). Starting with the whole
rectangle (the root), the algorithm recursively performs all decom-
positions into two sub-rectangles along the x and y dimensions, re-
spectively, using a certain step size (resolution). Rectangles of size
1 (pixels) are not split further. The root rectangle is equipped with
a single sum node, representing the distribution over all variables.
Each non-root rectangle R, containing more than one variable, is
equipped with ρ sum nodes, representing ρ mixture distributions
over the variables contained in R. Each rectangle containing ex-
actly one variable is equipped with γ Gaussian probability density
nodes, which are the leaves of the SPN. The means of the Gaussian
nodes are set to the γ quantile means of the corresponding variables,
calculated from the training set, and the standard deviation is set to
1. If R′ and R′′ are two rectangles generated by some split of R,
then for each combination of nodes N ′, N ′′, where N ′ comes from
R′ and N ′′ comes from R′′, a product node is generated and con-
nected as parent of N ′ and N ′′. The so-generated product nodes are
connected as child of each sum node in R. The weights of this SPN
are trained by a type of hard (winner-take-all) EM, with a sparseness
penalty, penalizing evocation of non-zero weights.

In [10], SPNs were trained for image recognition using condi-
tional likelihood, i.e. a discriminative criterion. In [11, 8, 7], al-
gorithms were proposed which do not rely on rectangular organiza-
tion of data. Closely related to SPNs are arithmetic circuits (ACs).
In [5, 12], ACs were learned to represent graphical models with
tractable inference. In [9], the algorithm proposed in [8] was modi-
fied to learn SPNs over distributions represented by ACs.

3. BANDWIDTH EXTENSION USING SUM-PRODUCT
NETWORKS

In [6], SPNs were used to recover missing (covered) parts of face im-
ages. Translated to the audio domain, specifically to the ABE prob-
lem, this corresponds to recover high frequencies from the telephone
band. In this paper, we modify the HMM-based framework for ABE
[13, 14] and incorporate SPNs for modeling the observations.

In the HMM-based system [13] time signals are processed in
frames with some overlap, yielding a total number of T frames. For
each frame, the spectral envelope of the high-band is modeled us-
ing cepstral coefficients obtained from linear prediction (LP). On a
training set, these coefficients are clustered using the LBG algorithm
[15]. The temporally ordered cluster indices are used as hidden state
sequence of an HMM, whose prior and transition probabilities can
be estimated using the observed frequency estimates. For each hid-
den state, an observation GMM is trained on features taken from the
low-band (see [13] for details about these features). In the test phase,
the high frequency components and therefore the hidden states of the
HMM are missing. For each time frame, the marginal probability of
the hidden state is inferred using the forward-backward algorithm
[3]. For real-time capable systems, the backward-messages have to
be obtained from a limited number of λ ≥ 0 look-ahead frames.
Using the hidden state posterior, an MMSE estimate of the high-
band cepstral coefficients is obtained [13], which together with the
periodogram of the low-band yield estimates of the wide-band cep-
stral coefficients. To extend the excitation signal to the high-band,
the low-band excitation is modulated either with a fixed frequency
carrier, or with a pitch-dependent carrier. According to [13] and re-
lated ABE literature, the results are quite insensitive to the method
of extending the excitation.

In this paper, we use the log-spectra of the time frames as ob-
servations, where the symmetric, redundant frequency bins are dis-
carded. Let S(t, f) be the f th frequency bin of the tth time-frame
of the full-band signal, t ∈ {1, . . . , T}, f ∈ {1, . . . , F}, where F
is the number of frequency bins and St = (S(t, 1), . . . , S(t, F ))T .
We cluster the log-spectra {S1:T } of training speech using the LBG
algorithm, and use the cluster indices as hidden states of an HMM.
On each cluster, we train an SPN, yielding state-dependent models
over the log-spectra. For training SPNs, we use the algorithm pro-
posed in [6] requiring that the data is organized as rectangular array;
here the data is a 1 × F rectangular array. We used ρ = 20 sum
nodes per rectangle and γ = 20 Gaussian PDF nodes per variable
(see section 2). This values were chosen as an “educated guess” and
not cross-validated. Similar as in [6], we use a coarse resolution of
4, i.e. rectangles of height larger than 4 are split with a stepsize of 4.

For ABE we simulate narrow-band telephone speech [16] by ap-
plying a bandpass filter with stop frequencies 50Hz and 4000Hz.
Let S̄(t, f) be the time-frequency bins of the telephone filtered sig-
nal, and S̄t = (S̄(t, 1), . . . , S̄(t, F ))T . Within the telephone band,
we can assume that S(t, f) ≈ S̄(t, f), while some of the lowest
and the upper half of the frequency bins in S̄t are lost. To per-
form inference in the HMM, this requires that the missing data is
marginalized in the state-dependent models, which can be done ef-
ficiently in SPNs [6]. More precisely, Gaussian PDF nodes corre-
sponding to unobserved frequency bins, constantly return value 1. In
this way, these variables are marginalized by the SPN in the upward-
pass. The output probabilities serve as observation likelihoods and
are processed by the forward-backward algorithm [3]. This deliv-
ers the marginals p(Yt|et), where Yt is the hidden HMM variable
in the the tth time frame, and et is the observed data up to time
frame t, i.e. all frequency bins in the telephone band, for all time
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Fig. 1. Illustration of the HMM with SPN observation models. State-
dependent SPNs are symbolized by triangles with a circle on top.
For the forward-backward algorithm, frequency bins marked with
“?” (missing) are marginalized out by the SPNs.

frames 1, . . . , (t + λ). An illustration of the modified HMM used
in this paper is given in Figure 1. Following [6], we use most-
probable-explanation (MPE) inference for recovering the missing
spectrogram content, where we reconstruct the high-band only. Let
Ŝt,k = (Ŝt,k(1), . . . Ŝt,k(F ))T be the MPE-reconstruction of the tth

time frame, using the SPN depending on the kth HMM-state. Then
we use the following bandwidth-extended log-spectrogram

Ŝ(t, f) =

{
S̄(t, f) if f < f ′∑K

k=1 p(Yt = k|et)Ŝt,k(f) o.w.
(1)

where f ′ corresponds to 4000Hz.

4. RECONSTRUCTING TIME SIGNALS

To synthesize a time-signal from the bandwidth extended log-
spectrogram, we need to associate a phase to the estimated magni-
tude spectrogram eŜ(t,f). The problem of recovering a time-domain
signal given a modified magnitude appears in many speech appli-
cations, such as single-channel speech enhancement [17, 18, 19],
single-channel source separation [20, 21, 22, 23] and speech sig-
nal modification [24, 25]. These signal modifications are solely
employed in spectral amplitude domain while the phase informa-
tion of the desired signal is not available. A typical approach is to
use the observed (noisy) phase spectrum or to replace it with an
enhanced/estimated phase.

In order to recover phase information for ABE, we use the it-
erative algorithm proposed by Griffin and Lim (GL) [26]. Let j ∈
{0, . . . , J} be an iteration index, and Ĉ(j) be a complex valued ma-
trix generated in the j th iteration. For j = 0, we have

Ĉ(0)(t, f) =

{
C̄(t, f) 1 ≤ f ≤ f ′

eŜ(t,f) o.w.
(2)

where C̄ is the complex spectrogram of the bandpass filtered input
signal. Within the telephone band, phase information is considered
reliable and copied from the input. Outside of the narrow-band,
phase is initialized with zero. Note that in general Ĉ(0) is not a valid
spectrogram since a time signal whose STFT equals Ĉ(0) might not
exist. The j th iteration of the GL algorithm is given by

Ĉ(j)(t, f) =

{
C̄(t, f) 1 ≤ f ≤ f ′

eŜ(t,f) ei̸ G(Ĉ(j−1))(t,f) o.w.
(3)

G(C) = STFT(STFT−1(C)). (4)

At each iteration, the magnitude of the approximate STFT Ĉ(j)

equals the magnitude eŜ estimated by our model, while temporal
coherence of the signal is enforced by the operator G(·) (see e.g. [25]
for more details). The estimated time signal sj at the j th iteration
is given by sj = STFT−1

(
Ĉ(j)

)
. At each iteration, the mean

square error between |STFT(sj)| and |Ĉ(0)| is reduced [26]. In
our experiments, we set the number of iterations J = 100, which
appeared to be sufficient for convergence.

5. EXPERIMENTS

We used 2 baselines in our experiments. The first baseline is the
method proposed in [13], based on the vocal tract filter model using
linear prediction. We used 64 HMM states and 16 components per
state-dependent GMM, which performed best in [13]. We refer as
HMM-LP to this baseline. The second baseline is almost identical
to our method, where we replaced the SPN with a Gaussian mixture
model with 256 components with diagonal covariance matrices. For
training GMMs, we ran the EM algorithm for maximal 100 itera-
tions and using 3 random restarts. Inference using the GMM model
works the same way as described in section 3, since a GMM can be
formulated as an SPN with a single sum node [7]. We refer as HMM-
GMM to this baseline. To our method, we refer as HMM-SPN. For
HMM-GMM and HMM-SPN, we used the same clustering of log-
spectra using a codebook size of 64.

We used time-frames of 512 samples length, with 75% over-
lap, which using a sampling frequency of 16 kHz corresponds to a
frame length of 32ms and a frame rate of 8ms. Before applying
the FFT, the frames were weighted with a Hamming window. For
the forward-backward algorithm we used a look-ahead of λ = 3
frames, which corresponds to the minimal delay introduced by the
75% frame-overlap. We performed our experiments on the GRID
corpus [27], where we used the test speakers with numbers 1, 2, 18,
and 20, referred to as s1, s2, s18, and s20, respectively. Speakers
s1 and s2 are male, and s18 and s20 are female. We trained speaker
dependent and speaker independent models. For speaker dependent
models we used 10 minutes of speech of the respective speaker. For
speaker independent models we used 10 minutes of speech obtained
from the remaining 30 speakers of the corpus, each speaker provid-
ing approximately 20 seconds of speech. For testing we used 50
utterances per test speaker, not included in the training set.

Fig. 2 shows log-spectrograms of a test utterance of speaker s18
and the bandwidth extended signals by HMM-LP, HMM-GMM and
HMM-SPN, using speaker dependent models. We see that HMM-LP
succeeds in reconstructing a harmonic structure for voiced sounds.
However, we see that fricative and plosive sounds are not well
captured. The reconstruction by HMM-GMM is blurry and does
not recover the harmonic structure of the original signal well, but
partly recovers high-frequency content related to consonants. The
HMM-SPN method recovers a natural high frequency structure,
which largely resembles the original full-band signal: the harmonic
structure appears more natural than the one delivered by HMM-LP
and consonant sounds seem to be better detected and reconstructed
than by HMM-GMM. According to informal listening tests1, the vi-
sual impression corresponds to the listening experience: the signals
delivered by HMM-SPN clearly enhance the high-frequency content
and sound more natural than the signals delivered by HMM-LP and

1Formal listening tests were out of the scope of the paper. All ABE sig-
nals, the full-band and the narrow-band telephone signals can be obtained as
WAV files from http://www2.spsc.tugraz.at/people/peharz/ABE/
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(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (e

jΩ)− 20 logEâτ (e
jΩ))2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2

, fs being the sampling frequency. The LSD at
utterance level is given as the average of LSDτ over all frames.

Tables 1 and 2 show the LSD of all three methods for the speaker
dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.
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