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ABSTRACT

A new noise production and propagation model for open- and

closed loop linear predictive coding (LPC) is proposed in this paper.

The model allows to accurately predict the overall SNR even at lower

bit rates where the conventional high rate theory fails. Moreover, a

source of LPC encoder instabilities is pointed out which is due to the

interaction between the quantizer and the (filtered) feedback of the

quantization error. The new model is verified by measurements.

Index Terms— linear predictive coding, quantization

1. INTRODUCTION

Theoretical analyses of linear predictive coding (LPC) are usually

based on the assumption of high bit rates, e.g., [1]. Yet, in practi-

cal applications such as speech coding, high rate theory is not able

to explain specific phenomena observed for low bit rates, for ex-

ample encoder instabilities. The observation of instabilities in LPC

indeed seems to be very astonishing since for variants such as Delta

Modulation [2], Differential Pulse Code Modulation (DPCM), and

Adaptive Differential Pulse Code Modulation (ADPCM) [3–5] de-

terministic and stochastic stability has been proven. Despite these

proofs, for the more complex approaches which use block adaptive

LPC with higher order linear prediction and feedback of the quan-

tization noise, unstable behavior at very low bit rates was already

described in [6]. As a solution, the author proposes to manipulate

the LP spectrum at high frequencies. In [7], it is stated that in noise-

feedback coding (NFC), a limiter is required to guarantee stability.

The instability is attributed to overload effects in the quantizer.

To further investigate these phenomena, a new theoretical anal-

ysis of LPC is devised in this paper. Key element of our investiga-

tion is a scalar quantization noise production and propagation model

which is valid for open- and closed-loop LPC with both scalar and

vector quantization of the prediction residual. In LPC, quantization

noise is effectively processed by the cascade of an “error weighting

filter” and autoregressive synthesis filter. We use a noise propaga-

tion network to model the effect of this processing on the quantiza-

tion noise. In the model, the noise is generated by a power controlled

additive noise source, motivated by the fact that practical quantizers

for LPC produce a nearly constant quantization SNR [7, 8].

It will be shown that the new model not only confirms the high

bit rate results known from literature but that it is also valid for lower

bit rates and explicitly accounts for the interaction between the quan-

tizer and the noise feedback. This interaction is mostly neglected

by previous analyses of LPC. The model explains why closed-loop

quantization may become unstable and allows to compute a theoret-

ical overall coding SNR which deviates from the SNR predicted by

the conventional high rate theory.

2. NOISE PROPAGATION MODEL FOR LPC

The new quantization noise production and propagation model as-

sumes that all signals are stationary with zero mean. The goal is

to compute relations between signal variances and to determine the

overall coding SNR as a function of the core quantization SNR re-

lated to the involved quantizer (here: SNR0).

The impact of all filters will be considered in the form of filter

gains. These gains are derived from the Wiener-Lee relation and

Parseval’s theorem [9] which state that, if an uncorrelated, stationary,

and spectrally white signal x(k) is filtered by a filter with system

function H(z), the power of the filter output signal y(k) is

E{y2(k)} =
1

2π

∫ π

−π

φy(Ω) dΩ =
1

2π

∫ π

−π

|H(Ω)|2σ2
x dΩ. (1)

In this context, the filter gain Gx,y is defined as the relation between

the variances of the filter output y(k) and the filter input x(k),

Gx,y
.
=

E{y2(k)}

E{x2(k)}
=

1

2π

∫ π

−π

|H(Ω)|2 dΩ. (2)

2.1. Model Definition

The signal flow chart in Figure 1-a) defines the encoding and de-

coding process of LPC, e.g., [10]. To highlight the impact of this

processing on the overall coding SNR, Figure 1-b) is derived from

Figure 1-a) and introduces the novel noise production and propaga-

tion model. Its components are summarized in the following.

1. Signal generation: The stationary signal x(k) to be coded is

assumed to be the output of an auto-regressive (AR) process which

is realized with an all-pole filter of order Nar with the AR coeffi-

cients aar = (aar,0, aar,1 . . . aar,Nar)
T whereby aar,0 = 1. The filter

is fed by an uncorrelated, zero mean, and spectrally white excitation

signal d0(k). Note that the corresponding magnitude spectrum has

zero-mean property since all poles of

Har(z) =
1

H0(z)
=

1
∑Nar

i=0 aar,i · z−i
(3)

are located inside the unit circle.

2. LP analysis: The LP filter coefficients are computed from the sig-

nal x(k) and used in the LP analysis filter HA(z) of order Nlpc. The

output is the LP residual signal d(k). It is assumed that Nlpc ≈ Nar

so that HA(z) is a good approximation of H0(z). Hence, d(k) is

similar to d0(k).

3. Quantization with noise feedback: This block comprises the

quantizer Q and the error weighting filter F (z). The quantizer input
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Fig. 1. Signal production and quantization noise propagation in open- and closed-loop LPC with noise feedback.
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Fig. 2. Noise propagation network with variances and filter gains.

d′(k) is the difference between d(k) and the weighted quantization

noise ef (k). The quantization error ∆(k) is assumed to be spec-

trally white, which clearly holds for high bit rates, e.g. [7]. Here,

this is generally assumed to be true, see the detailed discussion in

Section 4.1. As, furthermore, the quantizer is assumed to yield a

constant SNR0, the variance of ∆(k) depends on the variance of the

quantizer input d′(k). Hence, the quantizer is modeled as a power

controlled noise source (white arrow in Figure 1-b) with variance

E{∆2(k)} = σ2
∆ =

E{d′2(k)}

SNR0
. (4)

4. Noise shaping: The effective quantization noise d̃(k) − d(k)

within the quantized LP residual d̃(k) is a filtered (shaped) version

of ∆(k). The transfer function HNS(z) = 1 − F (z) is responsible

for this noise shaping.

5. LP synthesis: The LP synthesis filter is simply the inverse of the

LP analysis filter, i.e., HS(z) = (HA(z))
−1.

The signal flow chart of Figure 1-b) is now transformed into a

noise propagation network according to Figure 2. In that diagram,

instead of concrete signals and filters, only the corresponding vari-

ances and filter gains are shown. The signals d0(k) and ∆(k) are

assumed to be spectrally white and statistically independent. ef (k)
and d(k) are assumed to be mutually uncorrelated; the correspond-

ing variances can therefore be added (Bienaymé formula). The set

of the five involved filter gains is therefore given as follows:

Gd0,x =
1

2π

∫ π

−π

∣

∣

∣

∣

1

H0(Ω)

∣

∣

∣

∣

2

dΩ (5)

Gd0,d =
1

2π

∫ π

−π

∣

∣

∣

∣

HA(Ω)

H0(Ω)

∣

∣

∣

∣

2

dΩ (6)

G∆,ef =
1

2π

∫ π

−π

|F (Ω)|2 dΩ (7)

G∆,x̃−x =
1

2π

∫ π

−π

|HNS(Ω) ·HS(Ω)|
2

dΩ

=
1

2π

∫ π

−π

∣

∣

∣

∣

1− F (Ω)

HA(Ω)

∣

∣

∣

∣

2

dΩ (8)

G′
d′,∆ =

1

SNR0
, (9)

whereby the filter gain G∆,ef of the error weighting (noise feed-

back) filter F (z) will be denoted as the feedback gain in the follow-

ing. The gain G′
d′,∆ accounts for the power controlled noise source

which models the quantizer with SNR0, cf. (4). The LP coefficients

are assumed to be constant since x(k) is stationary (H0(z) is con-

stant). Therefore, also all filter gains are constant.

2.2. Derivation of the overall coding SNR (SNRlpc)

The overall coding SNR is defined as the division of the variance

of the signal to be encoded x(k) (position PI in the figure) by that

of the quantization noise in the decoder output, i.e., x̃(k) − x(k)
(position PII in the figure):

SNRlpc =
E{x2(k)}

E{(x̃(k)− x(k))2}
. (10)

In the following, E{(x̃(k)−x(k))2} shall be computed as a function

of the input signal variance E{x2(k)}. With respect to the signal

generation model, E{x2(k)} is given as

E{x2(k)} = E{d20(k)} ·Gd0,x = σ2
d0 ·Gd0,x. (11)

Now the variance of the LP residual signal d(k) can be written as

E{d2(k)} = E{d20(k)} ·Gd0,d =
E{x2(k)}

Gd0,x

·Gd0,d. (12)

The signals ef (k) and d(k) are assumed to be statistically indepen-

dent. Therefore, the corresponding variances can be added to pro-

duce the variance of d′(k):

E{d′2(k)} = E{d2(k)}+ E{e2f (k)}. (13)

The relation between the variances of the quantization error ∆(k)
and of its filtered version ef (k) is given as

E{e2f (k)} = E{∆2(k)} ·G∆,ef , (14)

and the variance of the effective quantization error that is inherent to

the decoder output signal is

E{(x̃(k)− x(k))2} = σ2
∆ ·G∆,x̃−x. (15)

Inserting (4) into (14) and the result into (13) yields

E{d′2(k)} = E{d2(k)} ·

(

1−
G∆,ef

SNR0

)−1

, (16)
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and, with (12) and (15), the effective noise can be expressed as

E{(x̃(k)−x(k))2}=E{x2(k)}·
G∆,x̃−x

SNR0
·
Gd0,d

Gd0,x

·
1

1−
G∆,ef

SNR0

. (17)

The overall coding SNR (10) therefore amounts to

SNRlpc =
Gd0,x

G∆,x̃−x ·Gd0,d

·

(

1−
G∆,ef

SNR0

)

· SNR0. (18)

3. EVALUATION OF THE NOISE PROPAGATION MODEL

By defining different constraints for HA(z), HS(z) and F (z), the

noise propagation model can be configured for open- and closed-

loop quantization. The open-loop case for F (z) = 0 and G∆,ef=0

(i.e., the maximum amount of noise shaping is applied) has been in-

vestigated in [11] where it is shown that open-loop LPC can benefit

from correlation in the input signal by partially decorrelating x(k)
in the LP analysis filter. The maximum open-loop SNR is achieved

by a “half-whitening” LP analysis filter HA(z), cf. [11]. The perfor-

mance is of course still inferior to that of closed-loop quantization

where F (z) 6= 0. In closed-loop LPC, which is considered in the

following, the LP analysis filter is commonly configured to decorre-

late the input signal as much as possible, i.e., HA(z) ≈ H0(z).

3.1. Source of LPC Encoder Instabilities

The noise variance of (17) may only assume positive values, hence

G∆,ef

!
< SNR0. (19)

Now if G∆,ef → SNR0 an increasingly unstable feedback loop

evolves, cf. Figure 2:

• The variance of ef (k) increases if the variance of the quanti-

zation error ∆(k) increases.

• The variance of ∆(k) increases if the variance of d′(k) in-

creases since the quantizer produces a constant SNR0.

• The variance of d′(k) increases if the variance of ef (k) in-

creases because ef (k) is independent from d(k).

The effective quantization error (17) may therefore increase without

bounds which is obvious for G∆,ef = SNR0.

3.2. High Bit Rate Approximation

The overall quantization SNR (18) shall now be approximated for

closed-loop quantization at high bit rates with and without noise

shaping. At high bit rates the noise variance can be assumed to be

very low, hence SNR0 ≫ G∆,ef . When noise shaping is deacti-

vated, i.e., F (z) = A(z/γ)
.
= 1−HA(z/γ) with γ = 1, the overall

coding SNR according to (18) reduces to SNRlpc,hr = Gd0,x · SNR0

since 1 − G∆,ef /SNR0 ≈ 1, Gd0,d = 1, and G∆,x̃−x = 1. With

the zero-mean property of the AR filter H0(z), it can be shown

that Gd0,x is equal to the conventional maximum prediction gain

Gp which is also given as the inverse of the spectral flatness mea-

sure [12] of x(k).The resulting logarithmic SNR in dB is therefore

10 log(SNRlpc,hr)γ=1 = 10 log(Gp) + 10 log(SNR0) (20)

which is the well-known result from the literature under high bit rate

assumptions, e.g., [1, 10, 12]. The correlation of x(k) can hence be

transformed into a benefit with respect to the overall coding SNR.

Set Gd0,x Gd0,d γ G∆,ef G∆,x̃−x

aar,1 19.62 dB 0 dB
1 15.46 dB 0 dB

0.9 12.14 dB 2.45 dB

aar,1 = (1,−2.58425, 2.95464,−2.08111, 1.23315,−0.920031, 0.969564,
−1.22493, 1.51283,−1.76435, 1.72109,−1.14735, 0.471528,

−0.199035,−0.18829, 0.667626,−0.514674, 0.0287184, 0.0887971)T

Table 1. Model parameters for example AR coefficients aar,1.

In closed-loop quantization with noise shaping the error weight-

ing filter is chosen as F (z) = A(z/γ) with, e.g., γ = 0.9. Here,

compared to the case where γ = 1, the filter gain G∆,x̃−x is in-

creased, and (18) yields a reduced SNR:

10 log(SNRlpc,hr)γ=0.9 = 10 log(SNRlpc,hr)γ=1 − 10 log(G∆,x̃−x).
(21)

3.3. A Case Study for the Exact Solution

In order to evaluate the new noise propagation model for lower bit

rates, some assumptions about the correlation properties of the in-

put signal x(k) shall be made. As a realistic example, a typical set

of AR coefficients aar,1 with Nar = 18 has been computed from a

representative short-term stationary audio segment with 22 kHz sam-

pling rate. Then, by approximating the required magnitude spectra

with a (long) DFT, the filter gains from Eqs. (5)–(9) can be easily

computed. All relevant model parameters for the present example

are listed in Table 1 for F (z) = A(z/γ)
.
= 1 − HA(z/γ) with

γ = 1 (closed-loop quantization without noise shaping) and γ = 0.9
(closed-loop quantization with noise shaping). In addition, the qual-

ity of the quantizer is assumed to be 10 log(SNR0) = 16 dB. Ac-

cording to the conventional high rate theory, the overall SNR (20)

without noise shaping (γ = 1) would amount to

10 log(SNRlpc,hr)γ=1 = 35.62 dB. (22)

With noise shaping (γ = 0.9), i.e., following (21), we get

10 log(SNRlpc,hr)γ=0.9 = 33.17 dB. (23)

Now, following the new noise propagation model (18) which is also

valid for low bit rates, it can firstly be concluded that the system

is always stable since, in the example of Table 1, condition (19) is

fulfilled for both values of γ. Without noise shaping (γ = 1), the

overall logarithmic SNR according to the new model is

10 log(SNRlpc)γ=1 = 26.28 dB. (24)

This is substantially lower than the value as predicted by the conven-

tional theory (22).

If noise shaping is used (γ = 0.9), the filter gain G∆,x̃−x and

the feedback gain G∆,ef are changed according to Table 1 and the

overall logarithmic SNR according to the new model is

10 log(SNRlpc)γ=0.9 = 30.86 dB (25)

which is still lower than predicted by the conventional high rate the-

ory (21) but it is—and this is remarkable—higher than the SNR for

γ = 1. As a conclusion, according to our new model, the choice

of γ < 1 is not only beneficial due to psychoacoustic reasons but

also improves the overall coding SNR of LPC in the low bit rate

regime. Moreover, we conjecture that, given a signal with a specific

correlation, there is an optimum γ to maximize the SNR.
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Fig. 3. Comparison of conventional and new theory with the verifi-

cation measurements. The example setup of Table 1 was used here.

3.4. Example for Encoder Stabilization by Noise Shaping

With a slightly worse quantizer in the case study from above, e.g.,

10 log(SNR0) = 13 dB, an unstable system would result for γ = 1
since (19) would no longer be fulfilled. In this case, the choice of

γ = 0.9 would be the solution to stabilize the complete system since

the feedback gain G∆,ef is reduced and (19) is fulfilled again.

3.5. Verification by Measurements

In order to verify the new noise propagation model, its theoretical

predictions were confirmed by measurements of a real LP based cod-

ing scheme whereby the example coefficient set aar,1 and a Gaussian

noise excitation d0(k) were used to generate an artificial stationary

input signal x(k). Apart from the overall SNR, also the required

filter gains G∆,ef and Gd0,x were measured by evaluating the sig-

nal powers of x(k), d(k), ∆(k) and ef (k). To ensure a constant

SNR0, a logarithmic (scalar) quantizer without overload was em-

ployed, cf. [13].

In Figure 3, the measurements are compared with the predic-

tions from conventional high rate theory and with that of our new

noise propagation model, demonstrating that the latter is much more

consistent with the measured results. The area for which the new

model predicts that the encoder becomes unstable is marked with a

gray background (SNR0 < 15.5 dB for γ = 1).

4. DISCUSSION

So far, issues related to the feedback of the quantization error in

LPC have not attracted much attention from the speech coding com-

munity. Nevertheless, there are circumstances under which also real

codecs produce severe artifacts, but, to be noticeable as such, a se-

quence of larger quantization errors must occur. Artifacts develop

more quickly if the feedback gain is high and are more likely at low

bit rates, i.e., when SNR0 is low. An example of typical symptoms

is shown in Figure 4 for a sequence from the artificial stationary sig-

nal of Section 3.5. Such artifacts are encountered more frequently

with audio (or music) input signals where segments with very high

prediction and feedback gains are common. Speech signals usually

do not exhibit such extreme characteristics.

4.1. Validity of the Model for Low Bit Rates

In the above derivations, a spectrally white and uncorrelated quan-

tization error ∆(k) has been assumed. Normally, this can only be

guaranteed for sufficiently high bit rates which may be perceived as

-1.5
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-0.5

0

0.5

1

1.5

2

2.5

 

 

x(k)
x̃(k)

Time index k →

x
(k
),
x̃
(k
)

artifacts due to encoder instability

Fig. 4. Coding artifacts resulting from unstable operation conditions.

a contradiction. However, the key to resolve this contradiction are

different notions of “low”: In the present context of coding of cor-

related signals, the bit rate (and thus the SNR0) are assumed to be

“low” if the conventional high rate theory fails to accurately predict

the overall coding SNR. In contrast, bit rates at which the assump-

tions regarding ∆(k) do not hold anymore are typically much lower

(and usually lie within the unstable region of the encoder system,

cf. (19)).

4.2. Applicability to CELP Coding

So far, the quantizer has been modeled by a scalar additive noise

source. Yet, the results can, to a large extent, be generalized to the

case of closed-loop LPC with gain-shape vector quantization (i.e.,

CELP [14]) because also here, due to the gain-shape decomposition,

a constant SNR0 ensues, see [13]. As a consequence, the instability

effects predicted by the new model can actually be observed in CELP

codecs under specific conditions.

However, the joint optimization of sequential samples (codevec-

tor search) implies a certain interdependence of the quantized sam-

ples which can not be achieved by scalar quantization. This interde-

pendence, effectively, acts as an implicit error weighting which must

be considered in addition to the explicit weighting by the noise shap-

ing filter. As a conclusion, the measured gains G∆,ef in a CELP

encoder differ from the theoretical values of (7) which can be ex-

plained by a non-white quantization error ∆(k).

5. CONCLUSIONS & OUTLOOK

In this paper a new quantization noise production and propagation

model has been devised which generalizes the conventional high rate

theory of LPC towards lower bit rates. In particular, it was shown

that for lower bit rates, the overall SNR is significantly lower than

the value predicted by the conventional theory. Moreover, the inter-

action between the quantizer and the feedback of the quantization

error in LPC has been explicitly considered. This feedback loop can

lead to encoder instabilities and overall performance losses.

The new aspects pointed out in this paper contribute to a deeper

fundamental understanding of LPC. Moreover, they are practically

relevant for low delay audio coding which will be the subject of a

follow-up paper: It will be shown how to combat the encountered in-

stabilities and how several techniques encountered in modern speech

codecs already help to mitigate such effects (although they have ini-

tially been introduced for other reasons).
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