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ABSTRACT

We present a method for optimization with sums of exponen-

tials subject to positivity constraints and apply it to the mod-

eling of empirical probability distribution functions and to the

design of IIR filters with non-negative impulse response. Our

approach uses exponents in a sparse arithmetic progression

and hence is able to transform the positivity condition to a

polynomial form that is computationally tractable. We show

how to obtain initial values for the exponents by sparsifying

a full progression and then present an iterative optimization

procedure using gradient steps. The modeling and design ex-

amples indicate a good behavior of our method.

Index Terms— convex optimization, semi-infinite pro-

gramming, positive polynomials, density modeling, non-

negative impulse response, sparse arithmetic progression

1. INTRODUCTION

The broad topic of this paper is the optimization with sum of

exponentials (SOE) functions

f(t) =
n
∑

i=1

αie
−λit, (1)

with λi ≥ 0 and (without loss of generality) λ1 ≤ λ2 ≤ . . . ≤
λn. The SOE is subject to the positivity constraint

f(t) ≥ 0, ∀t ∈ [t0, tf ] (2)

and possibly other convex constraints. The prototype problem

is the least squares optimization

min J(f) =
1

M

M
∑

m=1

wm[f(tm)− dm]2

s.t. f(t) ≥ 0, ∀t ∈ [t0, tf ]

(3)

where we try to fit the SOE to a function d(t), given by sam-

ples dm at times tm, m = 1 : M . The positive numbers wm
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represent weights. When the points tm are equidistant, we re-

place (3) with (tf − t0)J(f), which approximates the value

of an integral criterion, discretized with the rectangle method.

We note that if the exponents λi are given, then the problem

(3) is convex. It is still difficult due to its semi-infinite char-

acter, caused by the positivity constraint.

The main source of such optimization problems is the

modeling of probability density functions (pdf), for which

positivity is essential. In this context, a SOE pdf corresponds

to a hyperexponential distribution. The values dm from (3)

can come from an empirical pdf. There are applications in

various fields, including communications [1], but especially

in the financial and insurance [2] domains. For continuous

and discrete systems, exponentials are the basic components

of non-oscillatory responses and constraints like (2) can

model time domain constraints.

Our contribution here is based on a simple remark. If

the exponents λi form a sparse arithmetic progression (SAP),

case in which we will use the abbreviation SOEAP for (1),

then the positivity condition (2) can be expressed as the pos-

itivity of a polynomial (with sparse coefficients). Hence, the

constraint becomes finite and the problem (3) manageable.

Although we work with a particular type of SOE, the class

of SOEAP models is sufficiently rich for practice. (We note

that SAPs are dense in the set of increasing sequences in R
n.

However, for practical reasons, the ratio of the progression

cannot be arbitrarily small.)

We will show in Section 2 how to obtain a SAP from a

full progression, in order to obtain a SOEAP model. Also, we

will show how to find a SAP close to a given sequence, with

a lower bound on the SAP ratio. These tools are employed

in Section 3 for solving (3) and applied to the modeling of

empirical pdfs. In section 4 we use a similar procedure for

designing IIR filters with non-negative impulse response.

Relation with prior work. We are not aware of any method

solving SOE problems with SAPs. A full progression was

used in [3], however without taking advantage of polynomial

positivity tools. A design of FIR filters with non-negative im-

pulse response was proposed in [4]; a convex optimization

approach was given in [5]. We have not found any systematic
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method for the IIR case.

2. SPARSE ARITHMETIC PROGRESSIONS

If the exponents λi belong to an arithmetic progression, i.e.

there exist integers κi ≥ 0 and real numbers q > 0 and r such

that

λi = κiq + r, (4)

then checking the positivity condition (2) is computationally

more tractable, since by denoting x = e−qt, the condition

becomes

n
∑

i=1

αix
κi ≥ 0, ∀x ∈ [e−qtf , e−qt0 ]. (5)

This is the positivity of a polynomial on an interval and can

be expressed via an LMI [6, 7]. Note that the case tf = ∞
poses no difficulty and the effective degree of the polynomial,

which dictates the size of the LMI and hence the complexity,

is κn − κ1, since one can factor out xκ1 .

So, if (4) holds for known κi, q and r, the optimization

problem (3) is equivalent to an SDP one and can be solved us-

ing CVX [8]. The explicit transformation from (5) to an LMI

can be avoided by using the library POS3POLY [9], dedicated

to optimization with positive polynomials. If the effective de-

gree of the polynomial from (5) is reasonably small, say 100,

the problem can be solved quickly and accurately.

We put the above fact to work for solving the problem (3)

in two different contexts, in order to obtain good values of the

exponents λi.

2.1. From full to sparse progression

A model (1) can be general enough only if the exponents be-

long to a sparse arithmetic progression (SAP), i.e. there is no

decomposition (4) in which the integers κi are consecutive.

Finding an optimal SAP for (3) is obviously hard: even if q
and r are given, finding the best κi is essentially a combinato-

rial problem. We propose to start with a full progression and

use standard tools for enforcing sparsity.

We estimate the smallest exponent with a value λ̃1, either

by choosing a sufficiently small value or using the tail of the

empirical data dm, like in [10], since the slowest exponential

dominates the others for sufficiently large time values.

Instead of (1), we work with a SOE with N ≫ n terms

and exponents in arithmetic progression with given ratio q

f̃(t) =

N
∑

i=0

α̃ie
−(λ̃1+qi)t = e−λ̃1t

N
∑

i=0

α̃ie
−qit. (6)

We choose a ratio q that is small enough to cover the possible

intervals where the exponents lie and a number of terms N
that gives acceptable computation times.

We add to the criterion of the optimization problem (3) a

term promoting sparsity, namely the 1-norm of the vector of

coefficients, transforming it into

min J(f̃) + β
∑N

i=0 ̟i|α̃i|

s.t. f̃(t) ≥ 0, ∀t ∈ [0,∞)
(7)

where β and ̟i, i = 0 : N , are weighting constants. We

choose the value ̟i = 1/λ̃i for the coefficients weights, tak-

ing into account that
∫

∞

0 e−λt = 1/λ and hence normalizing

the exponentials from (1). The weight β is chosen by a trial-

and-error procedure.

After solving the SDP problem equivalent to (7), we

choose the exponents corresponding to the largest value

|α̃i|/λ̃i and proceed by solving (3) with these exponents

that form a SAP.

2.2. Approximation with a sparse progression

There may be situations (illustrated later) when we are given

a set of exponents µi, i = 1 : n, that do not form a SAP;

note that this is actually the generic case. In order to obtain a

directly solvable problem (3), we want to find λi belonging to

a SAP, namely the values κi, q and r from (4), such that the

distance

δ =

n
∑

i=1

(λi − µi)
2 (8)

is minimized. This distance can be made arbitrarily small

(but not necessarily zero); however, to get practically useful

solutions we must bound κn − κ1 or, equivalently, to impose

q ≥ qmin. If we want the maximum degree of the polynomial

(5) to be at most N , then qmin = (µn − µ1)/N .

If q is given, then the minimization can be solved exactly.

We only sketch here the solution, since the details are straight-

forward. It is enough to search for r ∈ [−q/2, q/2). For

a given r, the values κi are immediately available as [(µi −
r)/q], where the brackets denote rounding to the nearest in-

teger. So, the problem reduces to an unidimensional search

over r.

The search can be split on n + 1 intervals on which the

integer values κi cannot change their optimal value and hence

the criterion (8) is a simple quadratic in r whose minimum is

readily available. Let µi = kiq + ρi, with ρi ∈ [−q/2, q/2);
denote ̺i = ρi − q/2 if ρi ≥ 0 and ̺i = ρi + q/2 otherwise.

Then, the nearest SAP term to µi is κiq + r if r ∈ [−q/2, ̺i]
and (κi − 1)q + r if r ∈ [̺i, q/2). The (sorted) values ̺i,
i = 1 : n, split [−q/2, q/2) in n+ 1 intervals on which (8) is

a quadratic depending only on r.

To find a good value for q, which is a hard problem, we

use a random search over the interval [qmin, 2qmin), since

larger values cannot be better, as they have divisors in this

interval. Since we can find quickly the best SAP for given q,

we can afford running the random search for tens of q values.

From our experience, this seems enough to get a near-optimal

SAP approximation to a given sequence with n ≤ 10.
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3. FITTING A SUM OF EXPONENTIALS

Armed with the tools described in the previous section, we

can give now the procedure for solving the problem (3).

We first find a SAP set of exponents by solving the prob-

lem (7), which allows selecting the most important terms from

a full progression. With the selected λi, we can solve exactly

(3) to get an initial SOEAP solution.

Then, we start an iterative process searching for better val-

ues of the exponents. To this purpose, we attempt gradient

steps, which produce the exponents

µi = λi − ς
∂J(f)

∂λi

, (9)

where ς is the step length. Since these exponents do not form

a SAP, we approximate them with a set of (new) λi, as de-

scribed in section 2.2. The problem (3) can then be solved

exactly to provide a new set of coefficients αi.

The new criterion value is not necessarily smaller than the

previous; if this happens, we halve the step value and restore

the previous λi. The iterative processes is stopped when the

step size becomes very small or a maximum number of itera-

tions is reached.

We illustrate the results given by this method with two

examples. The weights in (3) are taken all equal, wm = 1.

Example 1 In [10], the target function is

d(t) = 16e−
t
2 − 30e−t + 15e−2t (10)

and takes also negative values, hence positivity becomes crit-

ical when solving (3). Positivity is imposed on the interval

[0, 10], which is large enough to ensure it on [0,∞]. We use a

grid with M = 100 equidistant points tm on this interval, on

which we compute the values dm = d(tm) with (10).

Using the tail of d(t) like in [10], the smallest exponent

estimation is λ̃1 = 0.4852. For finding the initial SAP for the

exponents, we take q = 0.01, N = 100 and β = 0.00005 in

(6–7). The obtained exponents values are 0.5052, 1.0852 and

1.4852. In the iterative part of the algorithm, we take ς = 0.1
in (9) and perform 30 gradient steps. The whole process needs

about 35 seconds on a Dell M4300 laptop. The final value of

the criterion is J = 0.0419, the SOE being

f(t) = 18.19e−0.5210t − 56.36e−1.0854t + 39.12e−1.4692t.
(11)

Figure 1 presents the graph of this function and of the target

(10). Also represented there is the optimal SOE function

f(t) = 15.5243e−
t
2 − 28.5073e−t + 14.2410e−2t (12)

with the same exponents as in (10) (forming a SAP), for

which the criterion is 0.0736, much higher than for (11). An

even higher value results for the best SOE reported in [10],

f(t) = 16e−
t
2 − 29.946e−t + 15.5385e−2t, (13)

for which the criterion is J = 0.1111.
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Fig. 1. The SOE functions from Example 1. Blue: target (10).

Red: best SOEAP (11). Black, dashed: best approximation

(12), with the same exponents as the target.
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Fig. 2. Results for Example 2.

Example 2 A standard problem in modeling empirical den-

sities is that of eruption durations of the Old Faithful geyser

[11]. The data series contains 272 values, grouped into M =
40 equally spaced bins and shifted towards the origin with 1.6

minutes, which is the smallest duration of an eruption. Figure

2 shows the graphs of the SOEAP models obtained with our

method, with n = 6 (blue) and n = 10 (red). The criterion

values are 0.112 and 0.082, respectively. The optimization

was performed with q = 0.05, N = 100, β = 0.0001, ς = 1.

A visual comparison with Fig. 4b from [12] (exact data are

not available) shows a quite similar result with the method

there (based on a more general model) and much better than

in previous works.

In other examples (not detailed here), using standard den-

sity models (Weibull, Pareto, lognormal), our method showed

better behavior, for models with the same order, than the

method using exponents in arithmetic progression [3] or the

classic Laplace transform method [13].
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4. DESIGN OF IIR FILTERS WITH NON-NEGATIVE

IMPULSE RESPONSE

A possible use of the SOE model is to impose time-domain

constraints on non-oscillatory responses of linear systems.

We explore here a single such application, the design of fil-

ters with non-negative impulse response [4, 14]. For FIR

filters, the constraint can be put directly on the coefficients of

the filter and hence is trivial. For IIR filters, the problem is

much more difficult, but we can tackle the case of filters with

real poles. We write the transfer function of the filter in the

simple fractions decomposition

H(z) =

p
∑

i=1

bi
1− aiz−1

+

K
∑

k=0

ckz
−k. (14)

Hence, the impulse response of the filter is

hk =

{
∑p

i=1 bia
k
i + ck, if k ≤ K

∑p
i=1 bia

k
i , if k > K

(15)

If the poles ai are real and given, we can impose the condition

hk ≥ 0, ∀k ∈ N, as follows. For 0 ≤ k ≤ K we use directly

the first expression from (15), gettingK+1 linear inequalities

in the coefficients bi, ck. For k > K we employ the SOEAP

tools developed in this paper.

Note that since the filter is stable, we have |ai| < 1 and

hence can write |ai| = e−λi , with λi > 0. If all ai > 0,

then we replace the positivity condition for k > K with the

continuous version

p
∑

i=1

bie
−λit ≥ 0, t ∈ [K + 1,∞). (16)

This condition can be implemented as discussed in the previ-

ous sections. Note that λi belonging to a SAP is equivalent

with the poles ai belonging to a sparse geometric progression.

If the real poles have different signs, then we put separate

conditions on even k = 2τ , where aki = e−2λiτ , and odd

k = 2τ + 1, where aki = aie
−2λiτ . Then we replace the

discrete τ with a continuous t.
The optimization criterion is the distance to the frequency

response of an ideal linear phase filter. Assuming that we

design a lowpass filter, this response is

D(ω) =

{

e−jγω, if 0 ≤ ω ≤ ωp

0, if ωs ≤ ω ≤ π
(17)

The group delay γ, the passband edge ωp and the stopband

edge ωs are given. Using a grid of discrete frequencies ωm,

m = 1 : M , the criterion

J =
1

M

M
∑

m=1

wm[H(ωm)−D(ωm)]2 (18)

is quadratic in the coefficients bi, ck. Its optimization with

positivity constraints is hence similar to the optimization of
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Fig. 3. Filters designed in Example 3.

the least-squares criterion (3). Since the model (14) may be

ill-conditioned, we put a cap on the maximum absolute values

of the coefficients (a value of 50 seemed perfectly satisfactory

in our experiments).

Example 3 We give a single example of design, with ωp =
0.1π and ωs = 0.15π. Since the lowpass non-negative fil-

ters have a decaying response in the passband, see [14, 15],

we take weights wm = 1 in the passband and wm = 100000
in the stopband. The best group delay appear to be around

γ = 16. Using poles in geometric progression starting at 0.9

with ratio 0.95, we note that a sparsifying criterion similar to

that from (7) favors the poles with highest magnitude. Keep-

ing p = 4 poles and setting K = 20, we obtain the filter

whose response is shown in Figure 3 (in blue). For compar-

ison, we also design an FIR filter with p + K coefficients

and linear phase, whose response is drawn in red (the crite-

rion for the FIR filter takes into account its own group delay,

not γ). We note that the IIR filter is sharper and has much

better attenuation in the stopband, although the passband is

somewhat worse. The value of the criterion is about twice

smaller for the IIR filter. This behavior is typical for filters

with relatively small number of coefficients. If the number

of coefficients is high, then the benefits of the poles are no

longer so significant.

5. CONCLUSIONS AND FUTURE WORK

Sparse arithmetic progressions have been proved useful in

solving optimization problems involving sums of exponen-

tials constrained to positivity. We have presented procedures

for modeling an empirical probability density function and

for designing IIR filters with non-negative impulse response.

Further work will be directed towards applying the new tools

to kernel estimation, using symmetrized exponentials cen-

tered in an arbitrary point, and also to attempts to generalize

the present ideas to the case of complex exponentials.
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