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ABSTRACT
In adaptive feedback cancellation the computational complexity and
the convergence speed are determined by the number of adaptive
parameters used to model the acoustic feedback path. Therefore it
has been proposed to reduce the number of adaptive parameters by
modeling the feedback path as the convolution of a time-invariant
common part and a time-varying variable part. While previous ap-
proaches have modeled the common part either using only poles or
using only zeros, in this paper we propose to use a common pole-
zero model and present an iterative method to compute the common
poles and zeros. Using measured acoustic feedback paths from a
two-microphone behind-the-ear hearing aid it is shown that the pro-
posed model enables either to increase the modeling accuracy given
a fixed number of parameters of the variable part or to reduce the
number of parameters of the variable part given a desired accuracy.

Index Terms— feedback cancellation, common part modeling,
invariant part extraction

1. INTRODUCTION

In recent years the number of hearing impaired persons supplied
with an open-fitting hearing aid has been steadily increasing. While
open-fitting hearing aids largely alleviate problems related to the oc-
clusion effect, they are especially prone to acoustic feedback, which
is most often perceived as howling. This demands for robust and
fast-adapting feedback cancellation algorithms.

Although several approaches for feedback cancellation are avail-
able (see e.g. [1] and references therein), adaptive feedback cancel-
lation (AFC) seems the most promising as it theoretically allows for
perfect feedback cancellation. In AFC the feedback path, i.e., the
impulse response (IR) between the hearing aid receiver and the hear-
ing aid microphone, is approximated using an adaptive filter.

It is known that in general the computational complexity and the
convergence speed of an adaptive filter is determined by the number
of adaptive parameters [2]. In [3, 4] it was hence proposed to model
the acoustic feedback path as the convolution of two filters: a fixed
filter to account for invariant or slowly varying parts of the feedback
path and an adaptive filter enabling to track fast changes. The fixed
filter can be thought to account for e.g. fixed transducer and mi-
crophone characteristics and fixed mechanical couplings. Moreover,
when estimated from different feedback paths of the same ear, this
fixed filter also accounts for similarities due to the individual char-
acteristics of that particular ear. By including a fixed filter, the goal
is to reduce the length of the adaptive filter and thereby increase its
convergence speed. The fixed filter may e.g. be estimated from the
IRs of several microphones, e.g. in multi-microphone hearing aids,
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which then usually models parts that are common in all of these IRs.
In the remainder of this paper this fixed filter is therefore termed
common part, while the time-varying filter that is assumed to be dif-
ferent for each IR is termed variable part.

Several methods have been proposed to estimate the com-
mon part from several IRs, including methods employing QR-
decomposition [5], SVD [6] or least-squares techniques [4, 7, 8].
In [7] the well known common-acoustical-pole and zero (CAPZ)
model was proposed, where for a set of acoustical transfer functions
the common part was modeled as an all-pole filter that physically
corresponded to room resonances, while the variable parts were
assumed to be all-zero filters. Using these assumptions a closed-
form expression could be derived for all coefficients. In [8] both
the common part and the variable part were assumed to be all-zero
filters and estimated by minimizing a non-linear cost function. In
[8] it was noted that the convergence of the solution depended on
the initialization values. In [4] the approach of [8] was used to
estimate an all-zero model of the common part for a set of 10 dif-
ferent acoustic feedback paths. During their evaluation they found
that, on the one hand, different types of arbitrary initialization, i.e.,
all-one sequences, random sequences and a truncated average IR,
only had minor effects on the results after convergence. On the other
hand, it was observed that an increase in modeling accuracy could
be achieved by initializing the common part all-zero model as the
truncated IR of the common part obtained by the CAPZ model.

Instead of assuming the common part to be an all-pole filter
[7] or an all-zero filter [4, 8], in this paper it is proposed to use a
pole-zero filter for the common part. The resulting cost function is
minimized using an alternating least-squares approach similarly to
[8]. Thus, this paper is related to the prior work of [4, 7, 8] and
extends their work to a pole-zero model for the common part. Ex-
perimental results using measured acoustic feedback paths from a
two-microphone hearing aid show two major findings: 1) using the
proposed common pole-zero model an improvement in modeling ac-
curacy can be achieved while maintaining a constant number of pa-
rameters in the variable part compared to the previously proposed
all-pole and all-zero models, and 2) using the proposed common
pole-zero model a reduction of the number of parameters of the vari-
able part compared to using an all-pole model or an all-zero model
can be achieved given a desired accuracy.

2. PROBLEM FORMULATION AND NOTATION

Consider a single-input-multiple-output (SIMO) system with M out-
puts as depicted in Figure 1(a), e.g arising in a single loudspeaker
multiple-microphone setup like in multi-microphone hearing aids.
The m-th output Ym(z) and the input X(z) are related by the m-th
acoustic transfer function Hm(z) as

Ym(z) = Hm(z)X(z). (1)
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Ĥv
1 (z)

Ĥv
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Fig. 1. System models.

With the goal of reducing the number of parameters needed to model
all M transfer functions the SIMO system is approximated as de-
picted in Figure 1(b), where the m-th transfer function Hm(z) is
approximated as

Hm(z) ≈ Ĥc(z)Ĥv
m(z)︸ ︷︷ ︸

Ĥm(z)

. (2)

Thus, the transfer function Ĥm(z) is split into two separate parts:
a common part Ĥc(z) and a microphone dependent variable part
Ĥv

m(z). Assuming that Ĥc(z) is a pole-zero filter with Nc
p poles

and Nc
z zeros and Ĥv

m is an all-zero filter with Nv
z zeros for each

microphone, the time-domain description of the IR ĥm[k] is then
given by

ĥm[k] = −
Nc

p∑
i=1

âc[i]ĥm[k − i] +

Nc
z∑

i=0

b̂c[i]b̂vm[k − i], (3)

with k = −∞, . . . ,∞ and b̂vm[k] = 0 for k < 0 and k > Nv
z . The

coefficients in vector notation are given by

âc =
[
âc[1] âc[2] . . . âc[Nc

p ]
]T

, (4)

b̂c =
[
b̂c[0] b̂c[1] . . . b̂c[Nc

z ]
]T

, (5)

b̂v
m =

[
b̂vm[0] b̂vm[1] . . . b̂vm[Nv

z ]
]T

, (6)

with [·]T denoting transpose operation. For later use let b̂v be de-
fined as the concatenation of coefficient vectors b̂v

m, i.e.,

b̂v =
[
(b̂v

1)T (b̂v
2)T . . . (b̂v

M )T
]T

. (7)

Previous approaches have either used all-pole models [7] or all-zero
models for the common part [4, 8]. In the following a pole-zero
model for the common part is used and it is shown how all the coef-
ficients can be estimated in a least-squares sense.

3. LEAST-SQUARES ESTIMATION

The objective is to estimate those parameters âc[i], b̂c[i], and b̂vm[i]
that minimize the mean-squared error between the true IRs hm[k]

and the approximated IR model ĥm[k], i.e., minimize the following
non-linear cost-function

J̄NLLSQ(âc, b̂c, b̂v) =
M∑

m=1

∞∑
k=−∞

(hm[k]− ĥm[k])2. (8)

Since this so-called output error minimization is known to be diffi-
cult [9], often the so-called equation error is used, i.e., the delayed

elements ĥm[k − i] on the right hand side of (3) are substituted by
hm[k − i] [7, 9], leading to

JNLLSQ(âc, b̂c, b̂v) =

M∑
m=1

∞∑
k=−∞

(hm[k]

+

Nc
p∑

i=1

âc[i]hm[k − i]−
Nc

z∑
i=0

b̂c[i]b̂vm[k − i])2

. (9)

Assuming that hm[k] is a causal FIR filter of finite order Nh
z , the

summation bounds in (9) may be changed to lower bound k = 0 and
upper bound k = Ñh

z +Nc
p , with Ñh

z = max{Nh
z , N

c
z +Nv

z + 1}.
Thus, (9) can be written in vector notation as

JNLLSQ(âc, b̂c, b̂v) = ‖h̃ + H̃âc − B̂vb̂c‖22, (10)

where h̃ is an M(Ñh
z +Nc

p +1)-dimensional stacked vector of zero-
padded versions of the true impulse response vectors hm, i.e.,

h̃ = [ h̃T
1 h̃T

2 . . . h̃T
M ]T , (11)

h̃m = [ hm[0] hm[1] . . . hm[Nh
z ]︸ ︷︷ ︸

hT
m

0 . . . 0︸ ︷︷ ︸
Ñh

z +Nc
p−Nh

z

]T , (12)

and H̃ is a M(Ñh
z + Nc

p + 1)×Nc
p -dimensional stacked matrix of

convolution matrices of delayed versions of h̃m, i.e.,

H̃ =
[
H̃T

1 H̃T
2 . . . H̃T

M

]T
, (13)

where

H̃m =



0 . . . 0

hm[0]
. . .

...
...

. . . 0

hm[Nc
p − 1]

. . . hm[0]
...

. . .
...

hm[Nh
z ]

. . .
...

0
. . .

...
...

. . . hm[Nh
z ]

...
. . .

...
0 . . . 0



(14)

and B̂v is an M(Ñv
z +Nc

p +1)×Nc
z +1-dimensional stacked matrix

of the convolutions matrices of b
(m)
v , i.e.,

B̂v =
[
(B̂v

1)T (B̂v
2)T . . . (B̂v

M )T
]T

, (15)
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and

B̂v
m =



b̂vm[0] . . . 0
...

. . .
...

b̂vm[Nc
z − 1]

. . . b̂vm[0]
... . . .

...

b̂vm[Nv
z ]

. . .
...

0
. . .

...
...

. . . b̂vm[Nv
z ]

...
. . .

...
0 . . . 0



. (16)

In the following an alternating least-squares approach is employed to
solve the cost function in (9), which was also used in [4, 8] where the
common part and the variable part were both assumed to be all-zero
filters, i.e., Nc

p = 0.
The objective of the alternating least-squares (ALS) approach

is to split the non-linear cost function of (9) into two separate lin-
ear least squares (LS) problems, which are solved alternatingly until
convergence is achieved. The advantage is that for the linear least
squares problems a closed form solution is available. The following
procedure is thus applied:

1. Initialize the coefficients of âc
j and b̂c

j at iteration j = 0.

2. Normalize b̂c
j to unit norm to achieve a unique solution, i.e.,

b̂c
j = b̂c

j/‖b̂c
j‖2.

3. Compute the vector b̂v
j+1 that minimizes the LS cost function

Jv
ALS(b̂c

j+1) = ‖h̃ + H̃âc
j − B̌c

jb̂
v
j+1‖22 (17)

where B̌c is a M(Ñv
z +Nc

p + 1)×M(Nv
z + 1)-dimensional

matrix defined as

B̌c =

B̂c

. . .
B̂c

 , (18)

where B̂c is a (Ñv
z +Nc

p +1)×(Nv
z +1) convolution matrix

similarly defined as B̂m in (16). This leads to

b̂v
j+1 = ((B̌c

j)
T B̌c

j)
−1(B̌c

j)
T (h̃ + H̃âc

j). (19)

4. Compute the vectors âc
j+1 and b̂c

j+1 that minimize the LS
cost function

Jc
ALS(âc

j+1, b̂
c
j+1) = ‖h̃ + H̃âc

j+1 − B̂v
j+1b̂

c
j+1‖22

(20)

leading to [
âc
j+1

b̂c
j+1

]
= (DT

j+1Dj+1)−1DT
j+1h̃, (21)

where Dj+1 =
[
−H̃ B̂v

i+1

]
.
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Fig. 2. Acoustic feedback paths from a two-microphone hearing aid.
The black line indicates h1[k], the gray line indicates h2[k].

5. set j = j + 1 and repeat steps 2. to 4. until convergence is
reached.

Different convergence criteria may be used, e.g. [4] assumed the so-
lution to be converged when j reached a predefined value and [8] as-
sumed convergence of the solution when the relative change of each
coefficient as well as the relative change of Jc

ALS(·) was smaller
than a predefined value. It is known that the ALS method relies on
a good initial estimate of âc

0 and b̂c
0 [4, 8]. Note that in [8] the ALS

approach was used to identify the common part and the variable part
that were both assumed to be all-zero, i.e., Nc

p = 0. Furthermore,
note that when assuming that Nc

z = 0, i.e., the common part is an
all-pole filter, the model is equivalent to the CAPZ model [7] and the
proposed ALS approach converges to the closed-form solution given
in [7].

4. EXPERIMENTAL RESULTS

In this section the influence of different combinations of the parame-
ters Nc

p , Nc
z and Nv

z on the modeling accuracy of the proposed com-
mon pole-zero model is evaluated. The proposed pole-zero model is
compared to the previously proposed all-zero and all-pole models.

Two acoustic feedback paths, i.e., M = 2, were measured us-
ing a two-microphone hearing aid with open-fitting earmolds on a
dummy head with adjustable ear canals similar to that presented in
[10]. The IRs were sampled at fs = 16 kHz and truncated to order
Nh

z = 99. The measured IRs are depicted in Figure 2 and show a
high degree of similarity that could possibly be exploited by model-
ing a common part. As a performance measure the average normal-
ized mean-square error between the true, i.e., measured, IRs hm and
the estimated IRs ĥm is used, i.e.,

NMSE = 10 log10

1

2

2∑
m=1

‖hm − ĥm‖22
‖hm‖22

. (22)

The coefficient vectors were initialized as âc
0 = 0 and b̂c

0 =[
1 0 . . . 0

]
. Although the obtained results rely on the choice

of the initial coefficient vectors, as mentioned in Section 3, it is
beyond the scope of this paper to compare different types of ini-
tializations. The convergence criterion was chosen similar to [8],
i.e., convergence was assumed when the relative change of each
coefficient as well as the relative change of Jc

ALS(·) was smaller
than 10−4.

The proposed model was evaluated for the following range of
parameters Nc

p , N
c
z , N

v
z ∈ {0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50}.

Note that for Nc
p = 0 the common part is assumed to be an all-

zero filter as proposed in [8] while for Nc
z = 0 the common part
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Fig. 3. Average NMSE as a function of Nv and Nc.

is assumed to be an all-pole filter as in the CAPZ model [7]. For
the sake of clarity let the number of parameters needed to model
the common part be defined as Nc = Nc

p + Nc
z and the number of

parameters needed to model each variable part as Nv = Nv
z .

Figure 3 shows the average NMSE that is obtained for different
choices of Nv and Nc. Note that, for some Nc different combina-
tions are possible, i.e., for Nc = 4 three different choices of param-
eters are possible: Nc

p = 4, Nc
z = 0 corresponding to a common

all-pole model, Nc
p = 0, Nc

z = 4 corresponding to a common all-
zero model and Nc

p = 2, Nc
z = 2 corresponding to the proposed

common pole-zero model. Only those combinations leading to the
lowest NMSE are shown. It is observed that generally by increasing
the number of parameters Nc of the common part and by increas-
ing the number of parameters Nv of the variable part a decrease in
NMSE is achieved. However, increasing Nc does not always lead
to improvements for some choices of low Nv . To quantify the influ-
ence of using a pole-zero model, in the following two cross sections
of Figure 3 are considered. First, to investigate the influence of Nv

on modeling accuracy a cross section for a fixed Nc is shown, and
second, to investigate the influence of Nc on the number of parame-
ters of the variable needed to model the complete path with a desired
accuracy a cross section for a fixed NMSE is shown.

Figure 4 depicts the minimum NMSE as a function of Nv for
a given number of parameters Nc = 25 of the common part. Dif-
ferent symbols indicate three different assumptions on the common
part model, i.e., an all-zero model (Nc

p = 0), an all-pole model
(Nc

z = 0), and a pole-zero model. All three models show an ex-
pected reduction in average NMSE when increasing Nv . Note that
by choosing those combinations of Nc

p and Nc
z for the common part

that correspond to the lowest NMSE it is obvious that the pole-zero
model will always show lower (or equal) NMSE compared to either
the all-zero or the all-pole model. For large values of Nv (> 10)
the results for the pole-zero model and the all-pole model coincide,
while for small values Nv (≤ 2) the pole-zero model and the all-
zero model show similar results. For the range of 2 < Nv ≤ 10 the
pole-zero model shows the best performance. These results indicate
that while maintaining a fixed number of parameters for modeling
the common part an increase in modeling accuracy can be achieved
when a pole-zero model is used especially for low values of Nv .

The influence of the number of parameters Nc of the common
part on the number of parameters Nv needed for the variable part to
model the complete path given a predefined NMSE = −20 dB is
depicted in Figure 5. As expected from the results in Figure 3 an in-
crease in Nc leads to a reduction in Nv . For small values of Nc the
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Fig. 4. Average NMSE as a function of Nv given a fixed Nc = 25.
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Fig. 5. Minimum Nv as a function of Nc given a predefined
NMSE = −20 dB.

pole-zero and all-pole models perform equally well, suggesting that
using only poles might be sufficient to model the general structure
of the common part. While for Nc > 15 a constant minimum Nv

is observed in the all-pole model additional reduction is achieved by
using a pole-zero model, indicating that using additional zeros can
model the common part in more detail with a medium number of
Nc. When further increasing Nc, ultimately the pole-zero model
and all-zero model coincide in their performance indicating that us-
ing a large number of zeros is sufficient to model the common part.
Thus, by using a pole-zero model for the common part, a reduction
in Nv is possible while maintaining a given NMSE compared to the
all-pole and all-zero model.

5. CONCLUSION

In this paper a method of estimating a common part and M variable
parts from of a set of M impulse responses was presented, where
the common part is assumed to be a pole-zero filter and the variable
parts are assumed to be all-zero filters.

Experimental results using measured acoustical feedback paths
indicate that the use of a common pole-zero model can increase the
modeling accuracy over using all-pole or all-zero models for a given
length of the variable part and enables to reduce the length of the
variable part for a given desired accuracy.
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