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ABSTRACT

Post-traumatic stress disorder (PTSD) is an anxiety disorder
that affects a large population and that is currently diagnosed
mostly through subject interviews and manual analysis of
self-reported symptoms and of subject behavior. However,
most PTSD cases are believed to go underdiagnosed and un-
dertreated. We present a multi-modal system for computer-
aided diagnosis of PTSD and stress that requires no clinician
interview and relies principally in the elicitation of multi-
modal neurophysiological responses to audio-visual stim-
uli. We conduct a thorough evaluation of the discriminative
power of the modalities involved (electro encephalography,
galvanic skin-response, electrocardiography, head motion
and speech), type of stimuli presented (audio, images, audio-
and-images and video), and emotions evoked (positive, neg-
ative, and trauma-specific) between PTSD subjects and high
and low-stress control groups. Our analysis indicates that the
multi-modal prediction from the elicitation of trauma-specific
emotions from images and audio is a promising approach to
computer-aided diagnosis.

Index Terms— computer aided diagnosis, multi-modal
fusion, EEG

1. INTRODUCTION

Post-traumatic stress disorder (PTSD) is a complex anxiety
disorder [1] caused by traumatic experience. Approximately
50% of the population are estimated to experience serious
traumatic exposure during their lifetimes. The estimated risk
of developing PTSD after such exposure is around 14% in the
general population, 24% in the young urban population [2],
and 10-30% in the combat veteran population (e.g. 20% for
veterans returning from Iraq and Afghanistan) [3]. It is es-
timated that approximately 8% of the US population suffers
from PTSD symptoms at some point during their lifetime [4]
and PTSD prevalence is highest in combat veteran popula-
tions, ranging from 10% to 30% depending on study and con-
flict [5, 6].
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The clinical diagnosis of PTSD is based on DSM-IV diag-
nostic criteria [1] that score multiple behavior dimensions. In
particular, symptoms of interest last at least a couple of weeks
and include: trauma re-experiencing sequences triggered by
trauma reminders, avoidance of trauma related thoughts and
feelings and hyperarousal. Since the behaviors over long time
intervals cannot be directly observed by an expert, the diag-
nosis is based on self-reporting information provided by the
subject. Therefore, the diagnosis depends on subject motiva-
tion, an opportunity to have an interview with a trained pro-
fessional, and on the accuracy of the self-assessment, factors
that can be affected by the diagnosis-related stigma [7].

In this paper we present three main contributions:

e We present a novel kiosk and protocol for the multi-
modal computer-aided diagnosis of PTSD and high-scoring
Holmes and Rahe stress [8] - i.e. individuals who expe-
rienced Major Life Stress (MLS). Our protocol combines
the structured presentation of audio-visual stimuli in a con-
trolled environment, with open-ended questions designed
to elicit the self-reporting of traumatic and stressful expe-
riences. The kiosk collects data from multiple modalities:
neuro-physiological (electro-encephalogram (EEG), elec-
trocardiogram (ECG) and galvanic-skin response (GSR))
and audio-visual signals.

e We demonstrate that the systematic combination of multi-
ple modalities monotonically increases prediction and di-
agnosis performance of PTSD and MLS. To the best of our
knowledge, this is the first study to address such catego-
rization using combined neuro-physiological, acoustic, and
lexical data.

e We identify the most informative stimuli and modality
for PTSD and MLS prediction from the analysis of data
recorded on individuals screened by trained specialists and
psychologists.

From an application and protocol design perspective, our
work has connections to dialogue-based systems for assess-
ment [9] and treatment of PTSD [10]. The main difference is
that our protocol relies on a predefined sequence of trauma-
related and generic audio-visual stimuli, and open-ended self-
report questions to rule out potential inconsistencies present
in open-ended dialogues. While there is existing research
that addresses PTSD assessment using different modalities,
such as heart rate [11], heart rate and GSR [12], EEG [13],
speech[14] and voice quality [15], the emphasis of our work
is the analysis of modality combinations and the identification
of the most informative stimuli and modalities. Finally, our
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Fig. 1: Overview of the proposed kiosk and protocol

work belongs to a set of efforts that analyze statistical proper-
ties of neurophysiological response measures to various stim-
uli (images, audio-visual, cognitive tasks or during selected
cognitive tasks [16]) for different subject groups (depression,
PTSD, anxious, healthy [13, 17] etc.). We go beyond statisti-
cal analysis of responses for different subject groups (healthy
vs. PTSD positive) and present results on prediction of PTSD,
high and low stress from subjects’ responses.

The remainder of the paper is organized as follows. In
Section 2 we describe the response elicitation scenario and
the collected dataset. In Section 3 we describe extracted fea-
ture sets. In Section 4 we present the PTSD classification
results and performance analysis for different modalities, fea-
ture sets and stimuli. We close with conclusions and future
work directions in Section 5.

2. KIOSK AND PROTOCOL

An overview of our kiosk in and response elicitation protocol
are presented in Fig. 1. In order to elicit responses informative
for PTSD and MLS diagnosis we designed a set of response
elicitation scenarios. The scenario consists of five segments.
In the first segment participants are presented with two stan-
dard self-report questionnaires, Holmes-Rahe major life stres-
sor scale (MLS) [8] and Clinician Administered PTSD Scale
(CAPS) [18], followed by two open-ended questions prompt-
ing user to talk about the traumatic experience and its effect
on different aspects of daily life. In segments two, three, and
four, participants are respectively presented with blocks of,
positive, negative and neutral images, selected from the Inter-
national Affective Pictures System (IAPS) [19]. Each image
is displayed for 5 seconds, and followed-up with a debriefing
screen on which subject self-report perceived distress level of
the stimuli and briefly talk about thoughts triggered by the

(SPECTRAL h
- PSD and Filter Bank power coefficients

- Spectral edge, Total power, Alpha peak
- Intensity weighted freq. and bandwidth
\- Spectral entropy J

SIGNAL STATISTICS

S
rd
- min, max, range, higher order moments
[ EEG ]—)[ Brain States]9 - zero crossings
Sub-interval | « |SIGNAL ENTROPY
Spectral - Approximate entropy, Sample entropy,
ECG, GSR, Permutation entropy, SVD entropy
MOTION
SPEECH

v

- Hjorth parameters

ACOUSTIC
- MFCCs, energy, pitch

MINAT
ASR - 65 DSM-V based distress codes

Fig. 2: Overview of the modalities and features used

stimuli. Finally, in segment five, subject are presented with
blocks of stimuli, containing images (5), audio clips (5), com-
bination of images and audio clips (5) and video clips (5) re-
lated to the trauma category selected in the first segment. The
total duration of the response elicitation scenario varies be-
tween 30 and 60 minutes depending on subject.

The response elicitation scenarios are delivered to sub-
jects in a kiosk via response elicitation tool that synchronously
presents stimuli and collects data from multiple sensors dur-
ing participants interaction with the tool. The tool syn-
chronously records 20-channel EEG, ECG and head mo-
tion signals using Advanced Brain Monitoring X-24 head-
band [20], GSR using Affectivas Q-sensor [21], speech using
close talk-microphone and the high-definition frontal face
video (Fig. 1).

3. FEATURE EXTRACTION

In this section we describe features we extracted from differ-
ent modalities. In order to compare the discriminative poten-
tial of different modalities and stimuli types, we extract a set
of neurophysiological features with record of successful ap-
plication on related tasks and augment it with features from
the non-intrusive audio and video modalities.

For EEG, EKG, GSR and head motion signals we ex-
tracted an exhaustive set of features in the time and spectral
domain on different time intervals (Fig. 2). In particular, we
extracted features on:

e Segment-level: Five intervals including the full duration of
each scenario segment;

o Stimuli-level: Answers to the two open-ended self-reporting
questions in the first segment, 15 intervals corresponding to
stimuli presentations in segments two, three, and four, 20
intervals corresponding to stimuli presentations in segment
five.

Motivated by successful application in recognition of af-
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fective states from EEG [22], we extracted additional sub-
stimuli level EEG features on 2-second sub-intervals with 1-
second overlap within each interval. These sub-stimuli fea-
tures include spectral features (power spectral densities and
filter bank power coefficients). As in [23], we also compute
measures of “brain state” that capture alertness and workload.

We extracted two types of features from the raw ECG,
GSR, motion and sub-stimuli EEG feature time series on in-
tervals of interest: signal statistics and signal entropy (Fig. 2).
Signal statistical features such as the signal’s minimum, max-
imum, range, mean, standard deviation, skewness, kurtosis,
zero crossings, fuse signal samples within each interval. This
is standard practice for transforming variable length signals
into fixed-length feature vectors [24]. Additionally, we com-
pute signal entropy features that measure signal complexity
and include Hjorth mobility parameters, approximate entropy,
sample entropy, and SVD entropy [25, 26].

In the spectral domain, we extracted an additional set of
EEG features on full intervals: the power spectral density
and derived multiple features from it, filter bank power co-
efficients for the bands theta (4-8Hz), alpha-low (8-10Hz),
alpha-high (10-12Hz), beta (12-30), and gamma(30-40Hz),
spectral edge, total power and bandwidth, alpha peak, in-
tensity weighted frequency and bandwidth and spectral en-
tropy [27, 26].

We extracted acoustic and ASR-based distress-related
features on intervals that correspond to spoken responses to
the open-ended questions in the self-report segment. These
interval-level acoustic features were obtained as statistical
functionals (max, min, range, higher order moments) of the
frame-level descriptors (pitch, intensity, formants, voice qual-
ity related jitter and shimmer, MFCCs, delta and acceleration
MEFCCs) extracted on 25ms processing frames with 10ms
frame shift. In order to mitigate effects of variability in
speaker characteristics and recording conditions we perform
cepstral mean normalization of MFCCs for each participant.

In prior work [28], we designed a coding scheme based on
PTSD diagnostic criteria, trained and evaluated classifiers that
discover 70 PTSD codes (combat exposure, sleep problems,
affective states, etc.) from text. We leverage this work by
running 70 PTSD code classifiers trained on PTSD forum text
data [28] on the ASR outputs. The obtained 70-dimensional
binary vectors form an intermediate representation directly
related to our classification task and we appended them to
the unigram features derived from the ASR output to create
an ASR feature set (Fig. 3(b)).

4. EXPERIMENTAL RESULTS

We evaluate the performance of our kiosk on a group of
30 individuals belonging to three cohorts, PTSD, MLS and
Healthy, with the last two cohorts corresponding to individ-
uals who scored high (MLS) and low (Healthy) respectively
in the Holmes-Rahe stress instrument [8]. For the identifica-

tion of PTSD individuals, a trained psychologist interviewed
and diagnosed each of the candidates. All individuals were
sampled from the general population according to a multi-
step screening process that included the evaluation of several
instruments such as the Beck Depression Inventory (BDI),
the Profile of Mood States (POMS) the State-Trait Anxiety
Inventory (STAI), the Center for Epidemiologic Studies De-
pression Scale (CES-D), and the NEO Personality Inventory.
The selection excluded individuals with medical conditions
that made them ineligible to withstand stressful stimuli or
perform demanding neuro-cognitive tasks.

Prior to data acquisition, all subjects completed a se-
quence of neurocognitive tasks designed to assess their levels
of memory, attention, mental workload and learning [23].
Once all data was collected, we investigated the following
problems: (1) Does it help to combine modalities for di-
agnosis? (2) What modality is most informative for PTSD
and MLS diagnosis? and (3) What types of stimuli are most
informative?

We research these questions in the context of multi-label
classification performance using support vector machines
(SVMs) with a grid search on kernel and parameter space
using an early fusion scheme (concatenation of features)
followed by Principal Component Analysis (PCA). An im-
portant general challenge in neuro-clinical pattern recognition
research is that datasets consist of a low number of observa-
tions [29] and are often high-dimensional. These conditions
can lead to optimistically biased estimates of generalization
performance. To address this risk, we propose two solutions.
First, rather than reporting the best performing model using
standard K-fold cross validation, we resort to repeated boot-
strapping (100 samples) and compute the full distribution
of out-of-bag results across all bootstrap samples. Second,
we evaluate every testing condition against two control ex-
periments, one using using stratified random classification,
and a second one using optimal classifiers fitted to features
randomly generated of similar dimensionality.

For scoring each solution, we use the Area Under the
Curve of the Receiver Operator Characteristic (AUC-ROC)
as the scoring selection method to evaluate our kiosk in every
testing condition. Since AUC-ROC is formally defined for
binary classification, we compute the macro average of AUC
across all labels mAUC as:

m n

1
mAUC = By, | — % > 1pi > pj] | . M

i=1 j=1

where E, denotes the expectation under the empirical out-
of-bag label distribution L, m and n are the number of true
positives and negatives respectively for a given label, I is the
indicator function, and p; is the classifier score on instance 1.

Which modality is most informative? Does combining
modalities help? We evaluate all possible combinations of
modalities in our kiosk; EEG, GSR, EKG, Speech and Head

3666



Random Features| +F Random Features 4
0.51 0.51
Random Guessing! b= Random Guessing b= k-
0.63 0.62
6 modalities 1--{TH EEG j--LTF-+
0.61 ) 0.58
5 modalities ™ Acoustic s O
iti 0.59 . 0.58
4 modalities ] Head motion e B Al |
0.58
3 modalities [ ASR b [ F--4
0.57 0.57
2 modalities ke GSR et o |
0.55 0.57
1 modality HH EKG s B |

0.0 0.2

(a)

0.0 0.2

(b)

0.4 0.8

1.0

Random Features Random Features

Random Guessing \—D Random Guessing

Trauma |

-| Images and Audio

Negative === Video ==

Positive === | Audio I

Neutral b=-- Images |

0.0 0.2

()

0.4 0.6 0.0 0.2

(d)

Fig. 3: Out-of-bag distributions of macro average AUC scores across modalities on the full data collection session ((a)-(b)) and
for different types of stimuli. (b)-(c)). (a) Results on the powerset of modalities with early fusion, grouped by the cardinality
of the set of modalities combined. (b): Comparison between modalities across the full session by averaging the relative
improvement in performance that each modality adds to other modalities in the powerset. (c): Comparison between different
time segments. The stronger and more negative the elicited emotional response is, the higher the discriminative power. (d):
Comparison between different types of stimuli for the responses within the trauma-specific. Our results show that eliciting
responses with trauma-specic stimuli made of still images and audio is particularly discriminative.

motion, by running independent early fusion classification ex-
periments on the powerset of modalities, for a total of 64 eval-
uations. We distinguish between the information added by
speech content vs prosody/acoustic aspects of the speech, and
show them as different modalities (ASR and Acoustic). To
evaluate the value added by each modality, we study the av-
erage improvement in performance that each modality adds
when combined with other modalities. To asses the value of
fusing modalities, we group the results of the powerset exper-
iments by the cardinality of the modalities involved in each
run (one to six modalities per run). The results are conclusive.
As we show in Fig. 3(a), adding modalities helps with predic-
tion, monotonically, suggesting that modalities complement
each other, even though most modalities provide similar per-
formance when tested in isolation as shown in Fig. 3(b), with
the sole exception of EEG which is particularly informative.
We note that this is not a trivial result, since every modality
adds hundreds of dimensions to a feature vector that is already
high-dimensional in relation to the number of instances.

Which type of stimuli is most informative? As dis-
cussed in Section 1, our stimuli vary in the emotional re-
sponse they try to elicit (positive, negative, neutral and
trauma-specific time segments), and the way they are de-
livered (images, audio, images and audio and video). We
study the value of each stimulus according to both criteria.
In Fig. 3(c) we show the distribution of scores for each time
segment. The stronger the emotional response elicited, the
more discriminative the features become, with the traumatic
segment winning over all other stimuli. In Fig. 3(d) we report
the scores for the type of stimulus, averaging across all repe-
titions (5) of the traumatic stimuli. The results show that the
multi-modal combination of features from images and audio
show the best performance across all our experiments.

5. CONCLUSIONS AND FUTURE WORK

We present, to the best of our knowledge, the first multi-
modal kiosk and protocol for PTSD and major life stress pre-
diction. Our results show that (1) eliciting responses with
trauma-specific stimuli made of still images and audio is par-
ticularly discriminative, and that (2) combining modalities re-
sults in a systematic monotonic improvement in performance,
despite the fact that the performance of each modality in isola-
tion is relatively weak. We note that building classifiers at the
individual stimulus level, as in the experiments in Figs. 3(c)
and 3(d) yields stronger performance on average than when
working with features computed from the full data collection
session as in Figs 3(a) and 3(b). We speculate that grouping
time-series from different stimuli in long sessions mixes and
dilutes information that could be captured by our features.

The kiosk technicians noted during our experiments that
subjects with severe PTSD found it hard to complete the
trauma-specific segments, even though they yielded the most
discriminative results. Future work includes the design, and
optimization of elicitation kiosks that avoid the presentation
of traumatic stimuli without sacrificing performance.

3667



(1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

6. REFERENCES

American Psychiatric Association, Diagnostic and statistical manual
of mental disorders: DSM-IV-TR, American Psychiatric Pub, 2000.

National Collaborating Centre for Mental Health (UK) (2005), Post-
Traumatic Stress Disorder: The Management of PTSD in Adults and
Children in Primary and Secondary Care, nice clinical guidelines edi-
tion, 2013.

Michele Spoont, Paul Arbisi, Steven Fu, Nancy Greer, Shannon Kehle-
Forbes, Laura Meis, and Indulis Rutks, “Screening for post-traumatic
stress disorder (ptsd) in primary care:a systematic review,” Tech. Rep.,
VA Health Care, 2013.

R. C. Kessler, P. Berglund, O. Demler, R. Jin, and E.E. Walters, “Life-
time prevalence and age-of-onset distributions of dsm-iv disorders in
the national comorbidity survey replication,” Archives of General Psy-
chiatry, vol. 62, 2005.

R.A. Kulka, W.A. Schlenger, J.A. Fairbanks, R.L. Hough, Marmar C.R.
Jordan, B.K., and A.S. Cranston, “Trauma and the vietnam war gener-
ation: Report of findings from the national vietnam veterans readjust-
ment study,” Tech. Rep., Brunner/Mazel, 1990.

H.K. Kang, B.H. Natelson, C.M. Mahan, K.Y. Lee, and EFM. Mur-
phy, “Post-traumatic stress disorder and chronic fatigue syndrome-
likeillness among gulf war veterans: A population-based survey of
30,000 veterans,” American Journal of Epidemiology, vol. 157(2),
2003.

C.W. Hoge, C. Castro, S.C. Messer, D. McGurk, D.I. Cotting, and R.L.
Koffman, *“Combat duty in iraq and afghanistan, mental health prob-
lems, and barriers to care,” The New England Journal of Medicine, vol.
351, 2004.

Holmes T.H. and Rahe R.H., “The social readjustment rating scale,”
Journal of Psychosom Res, vol. 11(2), 1967.

A. Papangelis, R. Gatchel, V. Metsis, and F. Makedon, “An adaptive di-
alogue system for assessing post traumatic stress disorder,” in In Proc.
ACM International Conference on Pervasive Technologies Related to
Assistive Environments, 2013.

Albert Rizzo, JoAnn Difede, Barbara O. Rothbaum, J. Martin Daugh-
try, and Greg Reger, Virtual Reality as a Tool for Delivering PTSD
Exposure Therapy, Springer, 2013.

G. Tan, T. K. Dao, L. Farmer, R. J. Sutherland, and R. Gevirtz, “Heart
rate variability (hrv) and posttraumatic stress disorder (ptsd): A pilot
study,” Applied Psychophysiology and Biofeedback, vol. 36(1), 2011.

T. Peri, G. Ben-Shakhar, S. P. Orr, and A. Y. Shalev, “Psychophysio-
logic assessment of aversive conditioning in posttraumatic stress disor-
der,” Biological psychiatry, vol. 47(6), 2000.

A. H. Kemp, K. Griffiths, K. L. Felmingham, S. A. Shankman, Arns M.
Drinkenburg, W., and R. A. Bryant, “Disorder specificity despite co-
morbidity: Resting eeg alpha asymmetry in major depressive disorder
and post-traumatic stress disorder,” Biological Psychology, vol. 85(2),
2010.

E. L. van den Broek, F. van der Sluis, and T. Dijkstra, Sensing Emo-
tions, Springer, 2011.

S. Scherer, G. Stratou, J. Gratch, and L-P. Morency, “Investigat-
ing voice quality as a speaker-independent indicator of depression and
ptsd,” in In Proc. INTERSPEECH, 2013.

R. R. Johnson, C. Berka, D. Waldman, P. Balthazard, N. Pless, and
T. Maak, “Neurophysiological predictors of team performance,” in
Foundations of Augmented Cognition, 2013.

E. Gordon, D. M. Palmer, , and N. Cooper, “Eeg alpha asymmetry
in schizophrenia, depression, ptsd, panic disorder, adhd and conduct
disorder,” Clinical EEG and Neuroscience, vol. 41(4), 2010.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]

3668

D. D. Blake, F. W. Weathers, L. M. Nagy, D. G. Kaloupek, Charney
Gusman, F. D, D. S., , and T. M. Keane, “The development of a clin-
ician administered ptsd scale,” Journal of traumatic stress, vol. 8(1),
1995.

P. J. Lang, M. M. Bradley, and B. N. Cuthbert, “International affective
picture system (iaps): Technical manual and affective ratings,” Tech.
Rep., University of Florida, 1999.

Advanced Brain Monitoring, “X  Series,” http://
advancedbrainmonitoring.com/xseries/, 2013.

Q Sensor, “Emotional biosensor powered by Affectiva,” http://
www.gsensortech.com/overview/, 2013.

V. Rozgic, S. Vitaladevuni, and R. Prasad, “Robust eeg emotion clasifi-
cation using segment-level decision fusion,” in In Proc. IEEE ICASSP,
2013.

C. Berka, Levendowski, D.J., M.N. Lumicao, A. Yau, G. Davis, V.T.
Zivkovic, R.E. Olmstead, P.D. Tremoulet, and PL. Craven, “Eeg cor-
relates of task engagement and mental workload in vigilance, learning,
and memory tasks,” Aviat. Space Environ. Med., vol. 73, 2007.

F. Eyben, M. Wollmer, and B. Schuller, “Opensmile: the munich ver-
satile and fast open-source audio feature extractor,” in In Proceedings
of the International Conference on Multimedia, 2010.

R. M Rangayyan, Biomedical signal analysis, IEEE Press., 2002.

S. Gudmundsson, T. P. Runarsson, S. Sigurdsson, G. Eiriksdottir, and
K. Johnsen, “Reliability of quantitative eeg features,” Clinical Neuro-
physiology, vol. 118(10), 2007.

S. Sanei and J. A. Chambers, EEG signal processing, Willey, 2008.

S. Saleem, R. Prasad, S. Vitaladevuni, Pacula M., M. Crystal, B. Marx,
D. Sloan, J. Vasterling, and T. Speroff, “Automatic detection of psycho-
logical distress indicators and severity assessment from online forum
posts,” in In COLING, 2012.

D. Van De Ville and S-W. Lee, “Brain decoding: Opportunities and
challenges for pattern recognition,” Pattern Recognition, vol. 45, no. 6,
2012.



