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ABSTRACT
Deep brain stimulation is a treatment for Parkinson’s disease
that uses electrical stimulation to modulate neural activity
in order to reduce motor symptoms associated with the
disease. The design of the electrical stimulation signal used
is strongly linked to the efficacy of such a treatment.
We present computational models of the brain structures
impacted by Parkinson’s disease which are modulated by
electrical current injections from chronically implanted elec-
trodes as a part of deep brain stimulation. This work
demonstrates that a high frequency signal with small random
deviations in pulse timing can simultaneously induce regu-
larized activity associated with improved motor symptoms
and permit greater variation in neural responses, which are
necessary to encode neural information.

I. INTRODUCTION

Neural activity can be artificially modulated by injecting
current via implanted electrodes in the neural tissue. This is
due to the fact that neurons communicate through electrical
and chemical signaling, and is called neuromodulation. The
concept of neuromodulation is the basis for a treatment of
Parkinson’s disease called deep brain stimulation (DBS).
This treatment uses chronically implanted electrodes in deep
brain structures to modulate the neural activity, with the goal
of ameliorating the pathological neural signaling associated
with the disease. DBS can help restore motor function
by altering the pathological signaling which is sent to the
motor cortex, which ultimately controls motor movement
performed by the patient. Naturally, how restorative the treat-
ment is depends on the design of the electrical stimulation
signal used.

Typically, two conductive contacts on the implanted elec-
trode are active and an electrical stimulation signal is trans-
mitted between these two contacts [1]. The signal may be
defined in terms of voltage or current; for this work we
assume that the stimulation signal is designed in terms of
the current flow between the two contacts. The standard
stimulation signal is a series of constant-current bi-phasic
square pulses. The pulses are short in duration, typically 50 -

Fig. 1. Example of DBS signals used. Both signals have
an average pulse frequency of 150 Hz, but the regular DBS
signal has periodic pulses while the timing of pulses for the
jittered signal is distorted with a small amount of noise, z.
For example, the nth pulse in the regular DBS signal occurs
at time tn while the nth pulse in the jittered DBS signal
occurs at time tn + zn.

200 ms per phase, have fixed amplitude, and are administered
at a constant frequency [2].

From human and animal studies, it has been empirically
found that higher frequencies stimulation signals tend to be
more effective and that a mixture of changes in firing rates
occur in response to therapeutic stimulation [1], [2], [6]. It
has been found in computational and animal studies that
with increasing frequency there is an increasing incidence
of stimulus-locked firing by neurons, meaning neurons fire
in response to a current pulse and thus become entrained
to fire at the same rate as the stimulation signal. Although
this is effective because bad information can no longer be
transmitted by these entrained neurons, this “informational
lesion” may also be a limiting feature of the treatment
since good information cannot be transmitted by the neurons
either.

To promote the mixture or variability in firing rate re-
sponses seen by the impacted brain structures in response to
DBS with regular current pulses, we propose a stimulation
signal with irregular timing of pulses. Previous work has
found that stimulation signal with pulse times drawn from
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a gamma distribution and instantaneous pulse frequencies
drawn from a log-uniform distribution were not therapeu-
tically effective [3], [4] and suggest that regularization of
neural activity is the key to the therapeutic benefit. However,
recent work by [5] suggests that a partial “informational
lesion”, corresponding to partial entrainment and regular-
ization of neurons, is necessary to allow low-rate encoding
of behaviorally relevant information while still blocking
pathological signals.

In this work, we consider adding a small amount of jitter
to the timing of pulses from a DBS signal with stimulation
frequency f . This design ensures that the average rate of
current pulses is preserved, but timing is irregular; see Fig. 1.
We hypothesis that a high stimulation rate may be required to
hold the state of the neurons away from the attractor state of
parkinsonian activity and that random timing of pulses will
ensure that high variability of some responses is preserved,
thus creating a partial lesioning effect.

II. BACKGROUND
The basal ganglia is a group of deep brain structures that

are involved in regulating motor movement, among other
things. This area of the brain is affected by Parkinson’s
disease and is the focus of this computational study. The
striatum is the main input component to the basal ganglia. Its
strongest output connection is to the globus pallidus externus
(GPe); with Parkinson’s disease, the striatal input to the GPe
inhibits the neural activity more than in the healthy brain.
The GPe connects to the subthalamic nucleus (STN) and the
globus pallidus internus (GPi). The STN connects back to
the GPe, forming a loop of activity, and is considered to be
the “clock” in this system. It is for this reason that DBS
electrodes are implanted in the STN. Additionally, the STN
also connects to the GPi, which is the main output structure
of the basal ganglia. The GPi forwards information from
the basal ganglia to the thalamus. The neurons that transmit
information from the thalamus to the motor cortex, where
motor movements are encoded, are called thalamocortical
(TC) neurons.

Connections between neurons in each brain structure are
made via synapses, which are small junctions between the
output end of one neuron (i.e. the presynaptic neuron) and
the input end of another neuron. These connections can
either be excitatory or inhibitory, which means that they
promote or impede activity at the receiving neuron, respec-
tively. Activity at a neuron is characterized by voltage spikes,
which are brief, sharp increases in voltage that occur when
sufficient excitation by other neurons and certain chemicals
has been received. The timing and rate of these spikes carry
the message the neuron wants to communicate with other
neurons downstream.

III. MODEL
Conductance based biophysical models, which consist of a

set of ordinary differential equations, are used to characterize

the voltage potential across the membrane of the neurons
over time. Four cell types are models here, one type per
nucleus that is incorporated in the system model. Below the
four models are described. Note that it is understood that
current vary with time and a current x is denoted as Ix,
which is shorthand for Ix(t). All neuron models are based on
previous work [7], [8], though parameter adjustments have
been made so that the spiking activity of the neurons in the
full network match experimental data [1], [6]. We also add
noise to the model by incorporating noise currents, Iz , into
the differential equations, where z is zero-mean Gaussian
variable.

III-A. STN Neurons
The voltage equation for the membrane potential, vSTN ,

is

Cm
∂

∂t
VSTN = −Il−IK−INa−ICa−IGPe,STN+IDBS+Iz.

(1)
The leak current is denoted by Il, while the potassium,
sodium, and calcium ionic currents are denoted by IK , INa,
and ICa, respectively. Inhibitory synaptic current from GPe
neurons, IGPe,STN , is also included in the model and is a
weighted sum of the inputs from all presynaptic GPe neu-
rons. Since the STN neurons are the target of the DBS, the
stimulation current, IDBS , is incorporated into the voltage
equation above.

III-B. GPe Neurons
The voltage equation for the membrane potential, vGPe,

is

Cm
∂
∂tVGPe = −Il − IK − INa − IT − ICa

−ISTN,GPe − IGPe,GPe + Istr,GPe + Iz.
(2)

The same nomenclature for Il, IK , INa, and ICa as with the
STN neurons is used. The GPe neurons have an additional
ionic current which is a T-type calcium current, denoted
as IT . It is assumed that there is excitatory input from
STN neurons and inhibitory input from other GPe neurons,
represented by ISTN,GPe and IGPe,GPe, respectively. Addi-
tionally, the input to the GPe neurons from the striatum is
modeled as a constant current, Istr,GPe.

III-C. GPi Neurons
The GPi neurons are very similar to the GPe neurons and

have the membrane potential equation

Cm
∂
∂tVGPi = −Il − IK −INa − IT − ICa

−ISTN,GPi + Iapp + Iz.
(3)

The same types of ionic currents are present as with the
model GPe neurons. However, there is no assumed inhibitory
inputs between individual neurons within the brain structure.
It is also important to note that Iapp, a constant current input,
is applied in order to ensure that the intrinsic firing rate of
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the GPi neurons is higher than GPe neurons, in agreement
with experimental data [1].

III-D. TC Neurons
The voltage equation for the membrane potential, VTC , is

Cm
∂

∂t
VTC = −Il−IK−INa−IT−Ie−IGPi,TC+Iapp+Iz.

(4)
The current denoted Ie represents time-varying excitatory
synaptic inputs from cells not explicitly included in the
simulation. These cells also receive excitatory inputs from
GPi cells, as represented by IGPi,TC . A constant excitatory
current, Iapp, is also applied since in the absence of inputs
this cell model will not fire.

III-E. DBS Pulse Timing
In practice, DBS pulses are bi-phasic, so current alternates

directions between electrical contacts on the electrode. This
is done so that charge does not accumulate due to the capac-
itive nature of neural tissue. Here we model the electrode as
a point source, so we assume that the DBS current signal,
Istim, consists of a pulse train with uni-phase pulses of width
ω microseconds and amplitude α pA/µm2. A single pulse,
pα(t), can be described as

pα(t) =

{
−α 0 ≤ t ≤ ω
0 otherwise . (5)

Assuming for simplicity of notation that stimulation begins
at t = −∞, we have

Istim =

∞∑
n=−∞

pα

(
t− n

f

)
, (6)

where f is the stimulation frequency. The above signal has
regularly spaced pulses at intervals of 1/f . With jitter, noise
is added to the timing of these pulses. In this case,

Istim(z) =

∞∑
n=−∞

pα

(
t− zn −

n

f

)
, (7)

where zn are i.i.d. zero-mean Gaussian random variables
with variance σ2 for all n. The average inter-pulse period
between pulses is still 1/f , but the period is no longer
deterministic.

III-F. Network Model
Each structure is represented by 16 model neurons, to-

taling 64 model neurons for the entire network. The links
between these neurons, i.e. the synaptic connections, are
randomly determined at the beginning of the simulation
and the strength of these connections evolves over time
according to the synaptic conductivity differential equations.
We determine this random synaptic connectivity map by
assuming that each cell i receives a fixed number nx of
inputs from a presynaptic cell type x. Thus nx indices
are selected by sampling uniformly without replacement
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Fig. 2. Cartoon showing synaptic connectivity for a small
network with four model neurons per structure. Excitatory
connections are depicted with solid lines and inhibitory
connections are depicted with dotted lines. The dark circle in
the middle of the STN neurons represents the DBS electrode

from the index set of presynaptic cell type x. This is done
independently for each cell i. For example, STN cell 1 may
receive inputs from GPe cells 2 and 4, while STN cell 2
could simultaneously be connected to GPe cells 2 and 3
since the random assignments are done independently. We
chose the numbers of links per cell type, nx, to match
empirical data and previous reports of approximate density
of connections between nuclei [2], [7]. The connectivity
assignments were selected to be made according to a uniform
distribution because it provide maximal randomness in the
model of connectivity, which is most appropriate when using
a small number of model neurons to globally represent
activity in a brain structure which in practice has many
orders of magnitude more cells. To illustrate the connectivity
model assumed, a smaller example network is depicted in
Fig. 2.

For the STN neurons, a notion of distance is also in-
troduced into the model. It has been shown that voltage
potential change induced by a current pulse decays as a
function of the distance between the neuron and the current
source [9], [10]. Thus, we uniformly distributed the STN
neurons inside a sphere of radius r, where the DBS electrode
is defined to be located at the center of the sphere. Since the
STN can be approximated as an ellipsoid with the smallest
axis of length around 4 mm [11], we assume that r = 4 mm.
Hence, for a DBS current signal Istim, the current at the ith

STN neuron is

IDBS = Istim exp{−(di/σd)2}, (8)

where di is the Euclidean distance from the sphere center
and σd is selected such that there is a large range in current
amplitudes seen throughout the sphere.

IV. RESULTS
For a particular realization of synaptic connectivity and

STN neuron topology, parkinsonian neural activity is simu-

3656



Fig. 3. Distribution of changes in firing rates experienced
by neurons while stimulation is administered, relative to
the firing rates from the preceding time period without
stimulation.

lated in response to (1) a regular, 150 Hz sequence of square
current pulses and to (2) the same sequence of pulses with
Gaussian jitter added to the timing of the current pulses.
The jitter had variance σ2 = 1 ms, which is 15% of the
regular pulse period. In each scenario, neural activity in
response to stimulation is simulated for 10 seconds, with 10
second epochs without stimulation included preceding and
following the stimulation period. The final 10 second interval
was used to verify that the network activity returned to the
parkinsonian state after stimulation ended. The step size in
the time domain was 0.01 ms, which was small enough to
capture the dynamics of the system. The parameters ω = 60
and α = 40 were selected based on what values are used
in practice and how consistently the resultant neural activity
matched previous reports [2], [7], [8].

Changes in firing rate, with and without jitter, were
characterized in order to determine how the stimulation
influenced the average spiking activity of all of the neurons.
Additionally, the coefficient of variation of the inter-spike
intervals (ISI), defined as

Cv =
σ

µ
, (9)

was used as a measure of regularity. Spike trains with a low
Cv are considered highly regular, or near periodic, while
spike trains with high Cv are considered to be more irregular
and have more variability in firing time.

Stimulus-locked firing was observed for a subset of STN
and GPi neurons in response to both regular and jittered
DBS, meaning these neurons had an average firing rate
of 150 Hz computed over the 10 second interval. The
lack of entrainment of GPe neurons is likely due to the
inhibitory connections between GPe neurons. This matches
neural activity that has been correlated with improvement in

r (Pearson) p 95 % C.I.
STN 0.921 1.21e-15 (0.783, 0.973)
GPi 0.995 6.35e-3 (0.986, 0.998)
GPe -0.651 4.14e-7 (-0.867, -0.229)

Table I. Correlations between change in Cv for regular and
jittered DBS.

motor symptoms [2], [6]. For non-stimulus-locked neurons,
changes in both firing rate and ISI Cv occurred. A mixture
of responses was observed with stimulation: some neurons
had increased firing rates, some had decreased firing rates,
and some neurons remained unchanged. This mixture of
responses is also consistent with previous computational and
in vivo studies [2], [6], [12]. However, we find that there is
greater variability in the distribution of firing rate changes
induced by DBS with jitter. In Fig. 3, the percentage of
neurons that display the three types of changes in firing rate
is depicted for each brain structure simulated; the bars on
the right half of the graph for the jittered case display a more
diverse range of responses.

In comparing the change in the Cv in response to reg-
ular DBS and DBS with jittered pulse timing, there is an
interesting correlation between the two for neural activity in
the GPe. While the changes in Cv for both STN neurons
and GPi neurons are positively correlated, the change in Cv
experienced by GPe neurons in the case of regular DBS
is negatively correlated with the case of jitter DBS. Exact
values are shown in Table I. The neurons with a decreased
Cv in response to regular DBS tended to have an increased
Cv with jittered DBS.

V. CONCLUSIONS

The goal of DBS is to regularize activity in the basal
ganglia structures so that information related to the disease
cannot be propagated through this area. However, some
variability in response must be allowed to ensure that the
basal ganglia can transmit partial information to other brain
regions. We presented a jittered design for a DBS signal.
Adding this randomness on top of a high-frequency DBS
signal enforced partial regularization in the STN and GPi,
while still maintaining a mixture of neural firings from all
structures and enabling the GPe in particular to function with
a wider range of activity, which may be key to creating a
partial informational lesion.
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