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ABSTRACT
In this paper, we consider the problem of Sparse Linear Operator
identification which is also linked with the topic of Sparse Deconvo-
lution. In its abstract form, the problem can be stated as follows:
Given a well behaved probing function, is it possible to identify
a Sparse Linear Operator from its response to the function? We
present a constructive solution to this problem. Furthermore, our
approach is devoid of any sparsity inducing penalty term and ex-
plores the idea of parametric modeling. Consequently, our algorithm
is non–iterative by design and circumvents tuning of any regular-
ization parameter. Our approach is computationally efficient when
compared the `0/`1–norm regularized counterparts.

Our work addresses a problem of industrial significance: de-
composition of mixed–pixels in Time–of–Flight/Range imaging. In
this case, each pixel records range measurements from multiple con-
tributing depths and the goal is to isolate each depth. Practical exper-
iments corroborate our theoretical set–up and establish the efficiency
of our approach, that is, speed-up in processing with lesser mean
squared error. We also derive Cramér–Rao Bounds for performance
characterization.

Index Terms— Deconvolution, sparse linear operator, spectral
analysis, system identification and Time–of–Flight (ToF) imaging.

1. INTRODUCTION

1.1. From Sampling Functions to Sensing Operators

Since Shannon’s introduction of the topic, sampling theory has
been at the heart of signal processing [1]. The field was revitalized
by advancements in wavelet/approximation theory, and sampling
spaces were extended to a much broader class of finite–energy sub-
spaces: the Shift–Invariant Space [2, 3], its extensions [4, 5] and
non–subspace models (cf. [6–8]). In crux, most of the approxima-
tion theoretic ideas in literature master the art of approximation of
functions from their equidistant or uniform samples.

Recent studies have raised an interesting question: What is the
analog of sampling theory for operators? In simple terms, the key
idea is to identify an operator from its response to a probing function
or the identifier. In order to formulate the problem, some assump-
tions are made on the nature of operator. Common examples include
smoothness/bandlimited and sparsity priors [9].

Within the framework of bandlimited hypothesis, Pfander dis-
cussed “Sampling of Operators” in [10]. This result inherits the non–
local flavor that is central to Shannon’s sampling theorem—localized
reconstruction requires knowledge of all the samples. Krahmer and
Pfander then take up the task of localized approximation in [11].

Departing from the bandlimited hypothesis [10], only recently,
Heckel and Bölcskei discuss the problem of identification of Sparse
Linear Operators (SLO) in [12, 13]. This work considers identifica-
tion of SLO. We begin the discussion with the problem of identifying
sparse operators in context of a practical application, that is, mixed–
pixel problem in Time–of–Flight (or ToF) imaging.

1.2. Motivation: Mixed–Pixel Problem in ToF Imaging

1.2.1. Time–of–Flight (ToF) Imaging from first principles
Time–of–flight (ToF) imaging is a recent imaging industry devel-
opment [14] which offers an effective alternative to triangulation
and stereo vision based methods for acquiring depth maps. This
modality has found a breadth of applications in several areas such
as non line–of–sight (NLOS) imaging [15], gesture recognition [16]
and computer graphics [17, 18], to name a few. A number of ToF
camera manufacturers including Microsoft (Kinect), Mesa, SoftKi-
netic and PMD provide competitive performance. To an entry level
reader, we refer to the book [19] or the survey article [20]. In this
area, the mixed–pixel problem (MPP) is critical to ToF cameras.
There has been a surge of research to solve this problem [19,21–28].
We introduce the problem starting from first principles.

Extracting Single Depth: For a fixed frequency ω, the ToF
camera probes the scene with illuminant p (t) = DC +α cos (ωt)—
an Amplitude Modulated Continuous Wave (AMCW) where the DC
term ensures that optical function p > 0. For simplicity, we will
ignore the DC term. After reflection and reception from an object at
depth d meters from the ToF camera, the probing function becomes,

r (t) = β cos (ω (t− 2d/c)) ≡ β cos (ωt− φω)︸ ︷︷ ︸
Reflected Signal

, (1)

where c = 3 × 108 m/s is the speed of light and β is the reflection
coefficient. The relative delay (or phase φω = 2ωd

c
) with respect

to the reference signal encodes the depth information of the scene.
Fig. 1. (a) explains the physical setup.

Let 〈p, r〉I =
∫
I
p (t) r∗ (t) dt denote the standard L2 inner–

product between functions p, r ∈ L2 where r∗ (t) is the complex–
conjugate of r (t). Following this, cross–correlation between func-
tions p and r is defined as, Cp,r (τ) = 〈p (t+ τ) , r (t)〉[−∆,∆]. The
ToF lock–in pixel [20] then decodes the depth information using the
Four Bucket Principle which is as follows. Starting with,

m (τ) = lim
∆→∞

Cp,r (τ)

2∆
=

1

2
αβ cos (ωτ + φω) , (2)

each lock–in pixel computes four discrete measurements, m [k] =
m (kπ/2ω), k = 0, . . . , 3. Let mk,l = m[k]−m[l]. The reflection
coefficient β and the corresponding phase φ are estimated by using,
β̃ =

(
m2

3,1 +m2
0,2

)1/2
/α and φ̃ = arctan (m3,1/m0,2).

This methodology makes ToF camera a real–time sensing device
because the depth estimation is computationally efficient. However,
this is a fragile result which only holds for a strong assumption. If
two or more depths correspond to the same lock–in pixel, the mea-
surements are corrupted. For example, a transparent sheet between
the scene and the camera will disrupt the hypothesis much in the
same way a photograph gets corrupted during imaging through a re-
flective surface. Fig. 1. (b) shows an exemplary setting which results
in corrupted measurements. Assuming negligible inter–reflections,
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Fig. 1. (a) The ToF camera emits a reference signal. Time delay of arrival
from direct reflection encodes the depth d1. (b) Demonstration of mixed–
pixel problem (MPP): two or more paths contribute to the pixel. The inter–
reflections between sheets are assumed to be negligible.

in case of K–depths the reflected function is modeled as, r (t) =∑K−1
k=0 βk cos (ωt− φk,ω) and the measurements take form of,

mK (τ)
(2)
= lim

∆→∞

Cp,r(τ)

2∆
= α

∑K−1

k=0
βk cos (ωτ + φk,ω). (3)

This is the mixed–pixel problem (MPP) in context of ToF imaging
as it is impossible to decode the K–depths from mK (τ) (cf. Fig. 1
and Fig. 3). This problem has received a lot of attention in the re-
cent past [21–28] due to difficulty of extracting φk,ω = 2dkω

c
from

mK (τ). An inspection of (3) reveals an interesting operator identi-
fication problem. Let ‘∗’ denote convolution operation. Notice that,∑K−1

k=0
βk cos (ωt− φk,ω)

(1)
= cos (ωt)∗

∑K−1

k=0
βkδ (t− 2dk/c).

Indeed this problem is associated with a sparse linear operator as,

mK : p→ p ∗
∑K−1

k=0
βkδ

(
· − 2dk

c

)
︸ ︷︷ ︸

Sparse Linear Operator

, p = cos (·) .

However, this is a special case that uses AMCW [24] with p =
cos (·). One need not restrict to the class of cosine probing functions.

1.3. Contributions and Organization of this paper
The MPP has been considered in number of papers (cf. [21–28] and
references there in). Existing approaches can resolve up to two com-
ponents and use AMCW/sinusoidal model. There is no mathemati-
cal framework that can explain solutions in a general setting. In Sec-
tion 2.1, we establish a concrete link between mixed pixel problem
(MPP) and the sparse linear operator identification (SLO) problem.
In Section 2.3, we outline a closed–form solution to recover the SLO
without using any sparsity regularized technique. In Section 3.1, we
discuss experimental results. We resolve multiple components of
mixed–pixels acquired using a ToF camera.
I Novelty: Our approach to identify the sparse linear operator is de-

void of any sparsity inducing penalty term. We solve the problem
using parameter estimation method for which we derive Cramér–
Rao Bounds. The method is easily implementable (cf. Section 3).

I Computational Efficiency: Our solution is closed–form/non–
iterative by design. It avoids the computation of regularization
parameter which is central to optimization based methods. The
complexity of implementation is discussed in Section 2.4.

I Practicability: The approach is verified on practical experiments
linked with ToF imaging. We report speed–up over OMP and
LASSO as well as lesser mean squared errors (cf. Fig. 2, 3).

2. THE SPARSE OPERATOR IDENTIFICATION PROBLEM

We define the Fourier Transform of p as p̂ (ω) = z [p]
def
=〈

p, eωt
〉
. Let BΩ be the set of bandlimited functions, BΩ =

{p : ‖p‖L2
<∞, p̂ (ω) = 0, |ω| > Ω}. In this paper, we will con-

sider bandlimited probing functions, that is p ∈ BΩ.

2.1. Link with the Mixed–Pixel Problem in ToF Imaging
Let s = p ∈ BΩ. The link between (5) and the mixed pixel problem

can be established by developing mK (τ)
(2)
= lim

∆→∞
Cs,r (τ)/2∆ or,

mK (τ) = 〈p (t+ τ) , r (t)〉t∈R

=

∫
p (t+ τ)

∑K−1

k=0
βkp

(
t− 2dk

c

)
dt

= Cp,p ∗
∑K−1

k=0
βkδ (τ − tk)︸ ︷︷ ︸

2K Sparse Linear Operator

, tk
def
= − 2dk

c
. (4)

Next, we define the sparse linear operator.

Sparse Linear Operator Let p ∈ BΩ, p (t)
def
= p (−t) and Cp,p =

(p ∗ p). We define a Sparse Linear Operator of 2K parameters as:

OK [p] : p→ Cp,p ∗
∑K−1

k=0
βkδ (· − tk). (5)

Parameters {βk, tk}K−1
k=0 completely characterize the operator OK .

From a signals and system perspective, the input/probing function
and the output are related as follows:

p→ OK →
∑

k∈K
βkCp,p (· − tk), Cp,p = (p ∗ p) .

Consequently, we conclude that mK (τ)
(4)
= OK [p] (τ) .

Inverse Problem: Given mK (τ) , τ ∈ R, how can we characterize
the 2K–Sparse Linear Operator, or OK in (5), with {βk, tk}K−1

k=0 ?

2.2. Related Work
In general, (5) is a multi–path/sparse deconvolution problem which
has been a topic of several papers starting [29]. Almost all papers
use a sparsity inducing penalty term [30, 31]. From a modern per-
spective, Santosa and Symes [32] introduced the notion of `2/`1–
optimization of cost–function to solve the problem (P1),

P1 Jλ (x) = ‖Tx−m‖2`2 + λ‖x‖`1 (6)

where T is a convolution/Toeplitz matrix. The first row/column of T
is the auto–correlation of the probing signal and m are the measure-
ments. Our problem can be cast as variant of P1 and solved using
optimization methods such as Orthogonal Matching Pursuit (OMP)
and LASSO [9,33]. For instance, in [25], we used LASSO and OMP.
However, the technique is computationally intensive which is inher-
ent to the sparsity induced optimization recipe. The problem scales
with the number of pixels, size of the probing function and the spar-
sity level. Depth–sensing with compressive sensing methods was
used in [34]. Within super–resolution framework, this problem was
recently discussed in [35]. The solution is based on optimization.

With the bandlimited hypotheses, our work comes close to the
topic of sparse sampling [6–8] with marked differences. The fact that
we can design the function p, and hence Cp,p (t) is a huge degree
of freedom which is not the case in sampling theory. In fact, not
being able to design p is a restriction in context of sampling theory.
All the more, we are not sampling a stream of Dirac impulses. We
are interested in system identification. A similar idea was pursued
in [36], however, the solution was based on `1 penalty term.

2.3. Sparse Linear Operator Identification without Sparse Reg-
ularization: Forward Model and Solution to Inverse Problem
Consider a probing function p ∈ BΩ which is T–periodic. In prac-
tice, this periodization is a standard trick. It goes by the name of
cyclic prefixing in OFDM related literature [37]. We use an M–
sequence for our practical set up (14). Consequently, p is defined
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as,
p (t) =

∑
|m|6Ω

p̂me
mω0t, ω0 = 2π/T (7)

where p̂m =
〈
p, emω0t

〉
are the Fourier series coefficients of p (t).

Let φ̂m = p̂mp̂
∗
m. It is not difficult to show that Cp,p (t) = φ (t),

Cp,p (t)
(7)
=
∑
|m|6Ω

φ̂me
mω0t. (8)

In this setting, we will show that it is possible to reframe problem P1
in (6) as a parameter estimation problem. Observe that the response
of the Sparse Linear Operator to the probing function is modeled by,

OK [p] (t)
(5)
= Cp,p ∗

∑
k∈K

βkδ (· − tk)

=
∑K−1

k=0
βk〈Cp,p (τ) , δ (t− τ − tk)〉τ︸ ︷︷ ︸

Cp,p(t−tk)≡φ(t−tk)

(8)
=
∑
|m|6Ω

φ̂m
∑K−1

k=0
βke
−ω0mtk︸ ︷︷ ︸

bm(t)

eω0mt. (9)

Also, bm (t) is parameterized by the vector t = [t0, . . . , tK−1]>.
On discretization, the above assumes a compact form of,

OK [p] (n)
(9)
= VIDFTDφ̂Vtβ

def
= y, (10)

or simply, VIDFTDφ̂b = y with n = 0, . . . , N − 1 and where,

— β = [β0, . . . , βK−1]>,β ∈ RK×1 is the coefficient vector.
— Vt∈ C(2Ω+1)×(K) is a t–parameterized Vandermonde matrix

with elements, [Vt]m,k = exp (mω0tk) , m = −Ω, . . . ,+Ω.

— Dφ̂ ∈ C(2Ω+1)×(2Ω+1) is the diagonal matrix Dφ̂ = diag
(
φ̂
)

,

with φ̂ = [φ̂−Ω, . . . , φ̂+Ω]> ≡ [p̂−Ωp̂
∗
−Ω, . . . , p̂Ωp̂

∗
Ω]> (8).

— VIDFT ∈ C(N×1)×(2Ω+1) is the usual inverse DFT/Vandermonde
matrix with matrix elements, VIDFT = [eω0nm]n,m.

We then define b = Vtβ. Next, we will outline the solution of the
inverse problem of retrieving parameters β and t from y.

Solving the Inverse Problem: Retrieving β and t
In practice, we have pixel-wise measurements,mK (τ) = OK [p] (τ)
(4). Given p, Dφ̂ is fixed by design. Let the discrete measurement
vector be defined as, y = m = [mK (0), . . . ,mK (N − 1)]> and
let A+ be the pseudo–inverse of matrix A. Under the conditions
that N ≥ 2Ω + 1 and Ω ≥ K [38], we have,

b = D1/φ̂V+
IDFTy, b ∈ RN×1. (11)

Having computed b, it remains to estimate parameters t and β from,

b = Vtβ ⇔ bm =
∑K−1

k=0
βke
−ω0mtk . (12)

This is the classic line spectrum estimation/Prony’s problem [38–
42]. Starting with a polynomial, H (z) , z ∈ C, of form,

H (z) =
∑K−1

m=0
hmz

−m ≡
∏K−1

k=0

(
1− e−jω0tkz−1

)
, (13)

it is not difficult to show that h∗ b = 0⇔ zk = e−jω0tk , that is, the
roots of H (z) encode the locations

{
e−jω0tk

}K−1

k=0
[6,38–42]. Since

h is in the null–space of Toeplitz matrix T constructed from b, the
singular value decomposition of T leads to h which in turn results in
H (z). From the roots of H (z), that is zk = e−jω0tk , we are able to

compute tk = − arg (zk) /ω0 and hence Vt [38]. Given Vt and
b, we finally compute β = V+

t b. This solves the problem.

2.4. Note on Enforcing Sparsity and Computational Complexity

As opposed to `0 or `1 penalty based methods, sparsity manifests as
a rank–constraint on Hankel/Topelitz matrix used for solving (12).
This is an in–built feature of algorithms such as Matrix Pencils [41]
or [40], which solve (12). Note that `0/`1 based methods start with
a dictionary/matrix [T]m,n = Cp,p (m− n) in (6). Hence they are
limited in resolution of shifts tk upto the grid of T. Our method uses
(12). In noiseless setting, it is not limited by resolution and tk’s can
be arbitrarily close upto machine precision in simulation. This is
a limitation for problem setup in (6). On the other hand, we must
remark that (11) must be stabilized in noisy setting. We use Matrix
Pencils [41] for the case of noise and [40] for model mismatch.

While the computational complexity of OMP [43] with TN×N

(6) and forK–sparse signal scales as, 2KN2+2K2N+4KN+K3,
our method uses (2K + 1) 2

√
2 log(2K+1) log (2K + 1) for diago-

nal matrix multiplication (pointwise multiplication) andN logN for
DFT in (11). What remains is due to Matrix Pencils [41] which is
known to be efficient in that none of the terms scale as N2.

3. FROM THEORY TO PRACTICE

3.1. Design of Practical Experiments with ToF camera
We demonstrate the efficiency of our method on two practical ex-
periments. To set up the experiment, we first calibrate the probing
function to obtain Cp,p. For this purpose, we use cyclic–prefixing of
a code based on M–sequence which is prescribed by,

Mseq = 0101110110001111100110100100001. (14)

We omit the details of conversion of Mseq into p (t) and eventually
Cp,p (t). In Fig. 2. (b), we plot Cp,p (t) with its Fourier Series ap-
proximation in (— —) as well as the Fourier Series coefficients, φ̂m
in the inset. For this case Ω = 29, N = 59. Each camera pixel
measures a mixture of light paths from 3 objects (K = 3): a glass
unicorn at depth z = 0, a plexiglass sheet at depth z = 2.00 meters
and a wall at depth z = 3.875 meters. To resolve the mixed pixels
(MPP), we use the SLO formulation in Section 2. Starting with mea-
surements y ∈ R4464×1 in Fig. 2. (b), we estimate β̃ and t̃. Unfortu-
nately, it is hard to obtain the ground truth for β however, the ground
truth for t = [2.0139 2.1553 2.2813]> ps or picoseconds.
When we solve the problem using (P1) in (6) using OMP, we obtain
t̃OMP = [2.020 2.156 2.257]> ps. For our case, we first ob-
tain b (11) and then use Matrix–Pencils [41] for our problem. Our es-
timate is reported as t̃ = [2.014 2.159 2.2289]> ps. The es-
timates are plotted in Fig. 2. (c). We denote the Mean Squared Error
or MSE between vectors x and y by MSE (x, y). Our estimation is
better than OMP in MSE sense. For our experiments, MSE(t, t̃) =

5.5×10−3 while, for OMP, MSE(t, t̃OMP) = 4.7×10−2. Our solu-
tion is non–iterative. For the same computing resources on Matlab,
our solution offers an average speed–up of 16.7x compared to OMP.
This is tested across a patch of 31 × 31 = 961 mixed–pixels. The
computational time is reported in Fig. 2. (d). In Fig. 2. (a), we com-
pare the result of using Matrix–Pencils [41] and Cadzow’s algorithm
[40] and plot MSE (in dB) versus Signal–to–Noise Ratio (SNR) for
SNR range of −10 to 38 (dB) for different values of oversampling
factor η such that N = 2ηK + 1. We consider η = 1, . . . , 5. Over-
sampling results in improvement of results. For experiments, we
used K = 3 with uniformly distributed t ∈ [0, 1] and the results
are an average over 5000 trials/SNR value. In another experiment,
we consider the case of K = 2,Ω = 28, N = 57. A diffusive
sheet covers a placard reading: “Time Of Flight,” which is 2 meters
away. The camera measurements are shown in Fig. 3. (a). Indeed
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Fig. 3. (a) Measurements (—) of a scene where a translucent/diffusing sheet
{β0, t0} hides a placard {β1, t1}. The mixed–pixels correspond to the case
of K = 2. Using our method, the mixed–pixels in (a) are decomposed into
the diffusing sheet in (b) and the placard that reads, “Time of Flight” in (c).
(d) We show measurements y for one of the pixel of 120×120 image. These
measurements are decomposed into shifted and amplitude scaled versions of
Cp,p = φ marked in - - - - . Depths ∝ {t0, t1} are marked with →.

it is impossible to read anything. However, since each measurement
corresponds to a mixed–pixel, we can use the sparse operator iden-
tification method to decouple the measurements. Consequently, in
Fig. 3. (b), we show the strong reflection from the translucent sheet,
that is {β0, t0}. Since we have estimated {β1, t1}, it is possible to
read through the translucent/diffusive sheet as shown in Fig. 3. (c).
In Fig. 3. (d), we show the measurements y and estimates β̃, t̃.

3.2. Cramér–Rao Lower Bounds (CRB)
With zero–mean, Gaussian noise assumption on en and covariance
matrix Σ = E [ee>] = σ2I we model N noisy measurements (10)
as, yn = OK [p] (n) + en ⇔ y = m + e. The parameter vector of
interest is θ̃ = [t̃0, . . . , t̃K−1|β̃0, . . . , β̃K−1]>. Within this frame-

work, the CRB of an unbiased estimator of the parameter vector θ
holds such that, V (θ̂) 6 J−1 (θ) where J is the Fisher Information
Matrix and V is the variance operator. Following the CRB simpli-
fication for Gaussian distribution (cf. Appendix 3C [44]), we have,
J (θ) = σ−2Υ>Υ. For simplicity we consider K = 1, then,

Υ
>

=

[
−β0φ

′ (1− t0) · · · β0φ
′ (N − t0)

φ (1− t0) · · · φ (N − t0)

]
.

Since the anti–diagonal of J (θ) is zero, the variance V (θ̃) >
σ2diag

(
β2

0Nω
2
0Sm, NS1

)
with Sm =

∑
mm

2φ̂2
m. Set SNR =

σ2/β2
0 , we obtain the spread in estimation of t0 and β0 as follows:

∆t0

T
>

1

2π
√
SmN · SNR

and
∆β0

|β|
>

1
√
S1N · SNR

.

4. CONCLUSIONS

As a follow–up on the recent investigations regarding identification
of operators from its response to a probing function [10–13], we dis-
cuss a non–iterative method for the problem of sparse linear operator
identification [13]. Our method is devoid of any sparsity inducing
penalty term. Our work finds application in context of resolving
mixed pixels in Time–of–Flight imaging for which our theoretical
set corroborates with practical experiments. We report a speed up in
computation time over previously used methods. Our method leads
to lesser mean squared error.
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