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ABSTRACT

In order to monitor the cardiac arrest patients response to therapy,
there is a need for methods that can reliably interpret the differ-
ent types of cardiac rhythms that can occur during a resuscitation
episode. These rhythms can be categorized to five groups; ventric-
ular tachycardia, ventricular fibrillation, pulseless electrical activity,
asystole, and pulse generating rhythm. The objective of this study
was to develop machine learning algorithms to automatically recog-
nize these rhythms. We proposed a detection algorithm based on the
nearest-manifold classification approach using a group of 8 time-
domain features as statistical measures on the signal itself, as well
as the first and second differences. The overall accuracy of the car-
diac arrest thythm interpretation is 79% which is 9% better than our
prior work. The sensitivity/specificity of shockable/non-shockable
rhythms is 92/95%.

Index Terms— Electrocardiogram, cardiac arrest rhythm in-
terpretation, pattern recognition, K-nearest neighbors, nearest-
manifold, K-local hyperplane distance nearest-neighbor

1. INTRODUCTION

During resuscitation of cardiac arrest victims professional rescuers
provide chest compressions, ventilation, drugs and electrical shocks
to the patient. The patient’s response to this therapy can be evaluated
through interpretation of the electrocardiogram (ECG) recorded dur-
ing therapy. During resuscitation, even trained personnel may have
high error rates [1], and this adds to the general quality issues re-
ported from cardiac arrest treatment [2, 3].

Resuscitation data review has been important in the work of sev-
eral resuscitation research groups [2, 4, 5]. Although the approaches
for data review differs in many aspects, there are some fundamental
similarities regarding rhythm interpretation and determining chest
compression sequences. These review processes are also dependent
on manual interpretation and registration which is time consuming
and resource demanding.

We want to develop methods to facilitate efficient resuscitation
data analysis. To achieve this it is important to provide reliable au-
tomatic methods for the fundamental parts of the review process. In
this study, we focus on developing methods for automatic rthythm
interpretation.
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This work is organized as follows: Section 2 explains the car-
diac arrest rthythms appearing during resuscitation episodes. In ad-
dition, the related prior work on cardiac arrest rhythm interpretation
is discussed in this section. Section 3 describes the classification al-
gorithm and feature extraction method. Sections 4 and 5 present the
results and discussion.

2. CARDIAC ARREST RHYTHM INTERPRETATION

2.1. Cardiac arrest rhythms appearing during resuscitation
episodes

In previous work involving manual review of resuscitation data, car-
diac arrest rhythms appearing during resuscitation episodes has been
categorized into five groups [2, 4]. The first rhythm is ventricular
tachycardia (VT) which is a rapid heartbeat in which the heart does
not pump blood efficiently due to inadequate filling and thus lower
stroke volume. It is usually a temporary condition either sponta-
neously corrects or deteriorates into ventricular fibrillation. Ventric-
ular fibrillation (VF) results in an unstable and irregular rapid heart
rhythm. The electrical impulses travel chaotically through the my-
ocardium and prevents proper heartbeat. The third rhythm is pulse-
less electrical activity (PEA) in which there exists an organized elec-
trical activity in the heart, but there is no mechanical activity and
thus palpable pulse. The fourth rhythm is asystole (AS) in which
there is no significant electrical and mechanical activities. In addi-
tion to the above rhythms, the fifth category encompasses all pulse
generating rhythms (PR). Fig. 1 shows examples from these five dif-
ferent categories.

In the context of shock advice algorithms, the first two rhythms
(VT and VF) are considered shockable rhythms which is treatable
using defibrillation, and the remaining three rhythms (PEA, AS, and
PR) are considered non-shockable rhythms where defibrillation is
not useful.

2.2. Relation to prior work

Historically, cardiac arrest rhythm analysis during resuscitation has
been dedicated to detection of shockable and non-shockable rhythms
in the development of so-called shock advice algorithms [6, 7]. Most
of those algorithms consist of different sub-algorithms where each
one tries to recognize different thythms based on the emulation of
expert judgment; for example detection of QRS for non-shockable
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Fig. 1. Representation of the 10s segments of five different rhythm
types (VT, VE, PEA, AS, and PR) during cardiac arrest. The y axes
are the amplitudes of the ECG signals in mV which are shown in the
different ranges for better representation.

rhythms [6]. Moreover, there are a few studies that have tried to
distinguishing between other types of cardiac arrest rhythms; rhythm
discrimination between PEA and PR has been proposed by [8].

Furthermore, in manual reviews it is common to consider all the
cardiac rhythms during resuscitation (VT, VF, PEA, AS, PR) rather
than just broad categories of shockable/non-shockable rhythms [9];
for further processing such as the evaluation of quality of CPR [2,
10] and analysis of state transition [4, 11, 12] the interpretation of
all different types of cardiac rhythms are needed. To the best of our
knowledge our previous study [13] was the first attempt to detect
these five different cardiac rhythms in which we used a probabilistic
framework with naive Bayes (NB) and logistic regression classifiers
with wavelet domain features.

The work presented here can be considered as a continuation
of [13] in which we use a geometrical framework to address the
rhythms interpretation problem. We used a nearest-manifold ap-
proach with time-domain features as described in section 3. After
finding different rhythms it is easy to propose shock advice algo-
rithms based on that. But, we should emphasize that the primary
purpose of our study was/is to detect different rhythms. Shock ad-
vice can be considered a secondary objective.

3. NEAREST-MANIFOLD CLASSIFICATION APPROACH

Many real-world data sets are high-dimensional with non-uniform
distributions which are concentrated around low-dimensional geo-
metric structures. In other word, they are low-dimensional (linear
or nonlinear) manifolds embedded within high-dimensional spaces.
Discovering such structures so-called manifold learning has been in-
vestigated in the literature of dimensionality reduction over the last

decade [14, 15, 16, 17, 18]. While the purpose of dimensionality re-
duction is to find the low-dimensional representation of data, there is
another possibility to benefit from the manifold assumption of data;
it can be used in the classification task.

Inspired by the K-nearest neighbors (KNN) -classification
method with the extra assumption that the data of each class is
located on the low-dimensional manifold; we can classify a query
sample to the closest manifold. One interpretation of this method
is that the empty spaces in the KNN classification paradigm are
virtually filled by the points located on the manifolds. But, since in
general those manifolds do not have analytical expressions, comput-
ing distances from the query sample to them can be problematic. To
address this problem, assuming that the manifolds of data sets are
smooth, then a nonlinear manifold can be approximated as a set of
locally linear manifolds. Thus, for finding the closest manifold to a
query sample we need to find locally linear manifolds of different
classes and then associate the class to the locally linear manifold
which has the smallest distance to the query sample. This idea
was introduced in [19] and named as K-local hyperplane distance
nearest-neighbor algorithm (HKNN).

HKNN or extensions of it are applied successfully on several
classification tasks ranging from bioinformatics to face recognition
and image segmentation [20, 21, 22, 23, 24, 25]. In the following,
at first we discuss HKNN algorithms in section 3.1, and then we
describe the feature extraction in section 3.2.

3.1. K-local hyperplane distance nearest-neighbor algorithm

HKNN is a modified version of KNN in which for a given query
point x we are looking for the closest local hyperplane in the neigh-
borhood of x where each hyperplane belongs to a specific class C,,
(m=1---M and M is the number of classes). To this end, in each
class C,, we find the K nearest points to the query point, then find
the hyperplane crossing those points, and finally find the minimum
distance hyperplane to the query point.

Suppose Nclfn = {nfm ; ngm yeee ,nf(m} represents the set of
K-nearest pomts to a query point x belonging to the C,, class, and
am = = Zk i n,C is the centroid of them. Then, the C,, local
hyperplane can be expressed as

LHE, (x) { "‘ﬁ—jz:akmv m

o eRK} (1)

where ng = ni’" —

is

n®" . The distance of x from this hyperplane

d( ,LHE (x)) = min
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m G i k k
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where ||-|| denotes the Euclidean norm. In order to determine aim

we need to solve the linear system

V& Ve, el =V (x —nm) 3)

where x and n°™ are D dimensional column vectors, o™ =
(af’”, e C’”) and V¢, is a D x K matrix whose columns
are the Vk vectors. After finding the distances of x from all local

hyperplanes, we can classify it in the following way

C* =arg Iginnd (x, LH?m (x)) . 4
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In addition, a penalty term A can be defined to penalize large val-
ues of ai’” (which corresponds moving away from centroid) in the
following way

d (x, LHéin(x))2 =

K 2 K
x— i@ =3 almyln
k=1

+AY (™) O

k=1

min
c K
oy mK €R

It should be noted that a hyperplane can approximate a class man-
ifold only locally. Thus, it is reasonable that for points which are
located far from centroid the hyperplane is no more a good approxi-
mation of the manifold. To determine agm in Eq. 5 this new linear
system must be solved

(V& Ve,, + ADa’™ =V (x —a°m), (6)

where I is the K x K identity matrix. Finally, to classify the test data,
in Eq. 4 the distance measure d (x, LHZ, (x)) must be replaced by

the new distance measure d’ (x, LHZ (x)) defined by Eq. 5.

3.2. Feature extraction

After trying several different sets of features ranging from wavelet
domain features as described in [13] to discrete cosine transform and
time domain histogram, the best results were achieved using simple
set of time domain features.

The features which are used in this study are 8 different statisti-
cal descriptors of the signal s(n) and its first and second difference
$(n) =s(n+1) —s(n),and §(n) = $(n + 1) — $(n) as follows:

The first three features are the interquartile ranges (which is the
difference between the upper and lower quartiles) of s, §,, and s,
where s, = (s(1),---,s(\)7, §, = (3(1),---,$(N-1))7, and
§y = (5(1),---,3(N-2))". The next three features are related to
the second, third, and forth statistics of the signal s, as follows

El(sy — Elsy])")I'"  for p=2,3,4 ™

where E [(s, — E [s5])?] is the p-th central moment of the signal
Sy, and |-| denotes the absolute value. The power 1/p is used in
order to make the features in the same unit as the signal s,,. In the
initial tests, instead of third and fourth moments we used skewness
and kurtosis which are dimensionless quantities, but it turns out that
the above features are better. Finally, the last two features are related
to the third, and forth statistics of the first difference signal s ,
B[y — E[$y)4Ye  for g=3,4. ®)
In addition to the above time domain (TD) features, for the com-
parison purpose we used the second set of features in the wavelet
domain (WD) as described in [13].

4. EVALUATION

4.1. ECG database

The data used in this work was extracted from a large out-of-
hospital cardiac arrest patients study. The original study was con-
ceived to measure the CPR quality in three geographic locations
between March 2002 and September 2004. A modified version
of Laerdal’s Heartstart 4000 defibrillator was used to record sur-
face ECG. Episodes were annotated by expert reviewers using five

Table 1. The overall accuracy (Acc) of the cardiac arrest rhythm de-
tection for 3s segments in addition to sensitivity (Sen) and specificity
(Spe) of shockable and non-shockable rhythms.

Algorithm Features Acc Sen  Spe
HKNN, K =6, A =0.5 TD 79%  92%  95%
HKNN, K =13, A =200 WD 75%  93% 96%
KNN, K =10 D 76% 95%  95%
KNN, K =5 WD 71% 86% 95%
NB D 64% 97% 83%
NB WD 70% 94% 90%

rhythm types (VF, VT, AS, PEA, and PR). For this study, artifact-
free segments with a single rhythm type annotation and a duration
of ten seconds (10s) were extracted. Records were resampled to 250
Hz. After reviewing the annotations a total of 1121 segments were
included in the database, which is composed of 269 VF, 25 VT, 262
AS, 411 PEA, and 154 PR.

For training and testing the classifier we used exactly the same
data as [13] in order to make the comparison of the results easier. For
training the classifiers, approximately 75% of the ECG data is used.
The training data consists of 176 VF, 15 VT, 214 AS, 311 PEA, and
115 PR. The remaining 25% of the ECG data is used as the test data
set for evaluation of the performance of the classifiers. The test data
consists of 93 VF, 10 VT, 48 AS, 100 PEA, and 39 PR.

4.2. Experiments and results

In order to test the accuracy of the proposed method, we have con-
ducted experiments to classify all five rhythm categories (VF, VT,
AS, PEA, and PR) based on both proposed method of this study
(HKNN in addition to the ordinary KNN) and proposed method in
the previous study (NB classifier) [13]. Although the purpose of this
study was to classify those five rhythms, in order to compare the pro-
posed method to shock advice algorithms we have also reported the
sensitivity and specificity of shockable (VF+VT), and non-shockable
(AS+PEA+PR) rhythms.

In our experiments two different sets of features TD and WD as
described in section 3.2 are used. Both sets of features are normal-
ized such that TD features lie in the interval [0, 1] and WD features
lie in the interval [—1, 1]. All reported results in this section refer to
the test data set.

Table 1 shows the best performance, in the sense of the accuracy
of rthythm detection for 3s segments of the ECG signals with differ-
ent algorithms including HKNN, KNN, and NB for both TD and WD
sets of features. In order to compare different methods in details, also
the confusion matrices for the results of HKNN (K = 6, A = 0.5,
and TD features), KNN (K = 10 and TD features) and NB (WD
features) are represented in Table 2. Finally, Fig. 2 demonstrates the
accuracy of rthythm detection of HKNN and KNN methods for both
TD and WD sets of features for different values of K (and A in the
case of HKNN).

5. DISCUSSION AND CONCLUSIONS

The results in Table 1 show a significant improvement in the accu-
racy of rthythm recognition; HKNN with TD features, X = 6, and
A = 0.5 has 79% accuracy which is 9% better than our previous
work [13]. The sensitivity/specificity of shockable/non-shockable is
92/95%.
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Table 2. The confusion matrices for HKNN (K = 6, A = 0.5, and TD features), KNN (K = 10 and TD features) and NB (WD features)

classification methods for 3s segments.

HKNN KNN NB
AS PEA PR VF VT AS PEA PR VF VT AS PEA PR VF VT
AS 42 6 0 0 0 42 5 0 1 0 42 5 0 1 0
PEA 6 80 8 6 0 9 76 10 5 0 11 63 17 9 0
PR 1 18 17 3 0 0 24 11 4 0 0 8 22 5 4
VF 0 4 1 88 0 0 2 1 90 0 0 4 2 69 18
VT 0 3 0 6 1 0 1 1 8 0 0 0 0 4 6
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Fig. 2. (a) demonstrates the accuracy of rhythm detection of HKNN with TD features for different values of K and A. (b) shows the accuracy
of rhythm detection of HKNN with WD features. And, (c) represents the accuracy of classification with KNN and both TD and WD features.

In all methods, most of the time the misclassification oc-
curs within shockable/non-shockable categories, which means
even if there are misclassifications in rhythm detection, usually
shockable/non-shockable categories are detected correctly.

Although, the number of true PEA detection is significantly in-
creased in the HKNN algorithm, PEA/PR detection still remains as
the most problematic task in the context of cardiac arrest rthythm
detection. By definition both PEA and PR classification represents
organized cardiac rhythm and the only clinical differentiating feature
is the palpable pulse. Pulse palpation as clinical test is notoriously
difficult for both lay persons and professionals [26]. In the classi-
fication of clinical states in the original data set, the combination
of ECG and CPR pattern and clinical notes from the patient report
forms were used. Addition of more process information from the re-
suscitation episodes, such as content of CO2 in the exhaled air (end
tidal CO2) or continuous oxymetry waveforms (SpO,) could have
aided the classification.

While the performance of VF detection is significantly in-
creased, the performance of VT detection is not good due to the
class imbalance problem. We are going to address this problem for
HKNN algorithm in our future work.

In addition, it is worth pointing out that although the goal of in-
troducing the parameter A was to penalize the large values of aim
in Eq. 5, the other possibility to benefit from the regularization pa-

rameter A is that if in Eq. 5, the matrix VCTm Ve, is ill-conditioned
then by defining a non-zero value for A the matrix VCTm Ve, + Al
will be well-conditioned and then Eq. 6 has reliable solution. In
fact, with the sets of features we have chosen we have this problem.
For example for HKNN with K = 6 as can be seen from Fig. 2-a the
best results achieve with small value of A\ = 0.5, but if we decrease
A further (A = 0) then Vch Ve, + AI will be ill-conditioned. One
possible remedy for this problem is that one use linear dimensional-
ity reduction with PCA and find the direction related to the largest
eigenvalues of V¢, then find the hyperplane crossing them. This
method will be investigated in our future work. Another suggestion
is to design better feature extraction method.

One possible limitation of this work is that the results might be
somewhat biased since we have not used k-folds cross validation
method.

Finally, although in this study we achieve a significant improve-
ment compare to the previous one, there is still room for further im-
provement possibly by the suggested approaches like better feature
extraction method and extension of HKNN in the case of class im-
balance problem.
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