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ABSTRACT
Development of Computer Aided Diagnosis systems that
mimic the performance of dermatologists when diagnosing
dermoscopy images is a challenging task. Despite the rel-
evance of color in the diagnosis of melanomas, few of the
proposed systems exploit this characteristic directly. In this
paper we propose a new methodology for color identification
in dermoscopy images. Our approach is to learn a statistical
model for each color using Gaussian mixtures. The results
show that the proposed method performs well, with an aver-
age Spearman correlation of 0.7981, with respect to a human
expert.

Index Terms— Melanoma, Dermoscopy image analysis,
color detection, Gaussian mixtures models

1. INTRODUCTION

For the past decade there has been an increasing interest in
the development of Computer Aided Diagnosis (CAD) sys-
tems for the analysis of dermoscopy images (see Fig.1) [1,
2, 3, 4]. The main purpose of these systems is the diagno-
sis of skin cancer, in particular melanoma. Most of the sys-
tems described in literature use common pattern recognition
approaches to diagnose the lesions. They extract a great num-
ber of common features that characterize the shape, color and
texture of the lesion and use them to train a classifier. De-
spite their interesting results, the main issue with this kind of
system is that it does not mimic the analysis performed by
a dermatologist. This makes them difficult to be accepted by
the medical community, who prefers systems that try to repro-
duce their established and validated methodologies. To deal
with this issue, a recent trend in CAD systems is to develop
different processing blocks that mimic the medical procedures
and detect relevant structures, such as pigment networks [5]
or streaks [6]. In this paper, we propose an algorithm for the
detection of colors in dermoscopy images, which is a feature
considered by dermatologists when diagnosing dermoscopy
images.

This work was partially funded with grant SFRH/ BD/84658/2012 and
by the FCT project PEst-OE/EEI/LA0009/2013.

Fig. 1. Examples of dermoscopy images.

The so called ABCD rule [7] accounts for the number
of colors while the 7-point checklist [8] considers two color
structures associated with melanoma. Furthermore, derma-
tologists claim that there are colors that are more common
in melanomas than in benign lesions: black, blue-gray, white
and red, showing that color detection and quantification in
dermoscopy images is of great significance. However, there
are few studies that focus on this problem. The most common
type of color based CAD systems are those that aim at de-
tecting blue-whitish veil and use this single characteristic to
classify the lesion as melanoma or benign [9, 10, 11]. A dif-
ferent idea is used in [12] and [13]; instead of detecting a sin-
gle color structure, their methods are inspired by the ABCD
rule and the Menzies’ method [14], respectively, and tries to
quantify the number of colors. Nonetheless, the detection of
colors in dermoscopy images is still an open problem.

The methodology proposed in this paper consists of com-
puting a statistical model of 5 significant colors (black, blue-
gray, white, dark and light brown) using Gaussian mixtures
[15]. This is done using a training set of segmented images
provided by an expert. Then, the learned mixtures are used
to asses the colors of a larger set of images. As far as we
know, this is the first time this kind of approach is applied
to dermoscopy images. The training and testing procedures
are described in Sections 2-4. The color assessment results
are reported in Section 5, while Section 6 concludes the paper
and gives some remarks on future work.

2. SYSTEM OVERVIEW

The proposed color description and detection system com-
prises two different stages (see Fig. 2). First, a Gaussian
mixture model is learned for each of the colors using the algo-
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Fig. 2. System Overview.

rithm proposed by Figueiredo and Jain [15]. Thus, the learned
color model comprises five different mixtures, one describing
each color considered in the ABCD rule (black, dark brown,
light brown, blue-gray and white) [7]. Dermatologists also
consider red as a color that can be found in dermoscopy im-
ages. However, we have not modeled it due to lack of train-
ing data. A detailed description of the color modeling stage is
presented in Section 3.

After learning the color models, these models are used to
detect the presence of each color in new images. This task is
performed by splitting the lesion into M×M square patches
and computing their probability of membership to each of the
mixtures. Finally, the number of colors in the image is quan-
tified. Color assignment and quantification processes are de-
scribed in Section 4.

Prior to the aforementioned two steps the images are pre-
processed. First, we remove hair and bubbles artifacts using
the algorithm described in [5] and compute a binary segmen-
tation mask. To avoid errors related to incorrect segmenta-
tions this task is performed manually. Then, gamma correc-
tion (γ = 2.2) is applied to convert the images to the standard
RGB (sRGB) format [16]. The following step consists of ap-
plying color normalization (Shades of Gray [17]). This inter-
mediate step is performed in order to deal with color variabil-
ity caused by different light sources. Finally, the corrected
images are transformed into the HSV and CIE La*b* color
spaces, we have selected these two spaces because both cor-
relate well with human color perception, which is not true for
the RGB space.

3. LEARNING COLOR MODELS

This section explains the methodology used to learn the five
Gaussian mixtures that describe the colors.

3.1. Training Set

The training set used consists of 27 dermoscopy images. For
each image, the different color regions were manually seg-

Fig. 3. Examples of color region segmentations.

mented and labeled by an expert dermatologist (see an exam-
ple in Figure 3). In the end, there are 17 examples of both
dark brown and light brown, 5 examples of blue-gray, and 3
examples of both black and white.

A set of round patches, each with a radius of 5 pixels,
was then randomly selected in region. Since there are con-
siderably more examples of dark and light brown than of the
remaining colors, the number of patches extracted from each
of the corresponding regions was smaller. Therefore, we se-
lected 250 patches from each light and dark brown regions,
350 patches from each blue-gray region and 500 patches from
each white and black regions. The final step computes a fea-
ture vector to characterize each patch, which is its mean color.

3.2. Learning Color Mixture Models

In this work we adopt a statistical model for the colors based
on Gaussian mixtures. Since there is a different number of ex-
amples of each of the five colors, i.e., the data are unbalanced,
a separate mixture is computed for each color. Thus, the final
color palette comprises five different Gaussian mixtures, each
with the following probability density function

p(y|c, θc) =
kc∑

m=1

αc
m p(y|c, θcm) , (1)

where c = 1, 2, ..., 5 denotes each of the five colors, kcc is the
number of components of the color mixture, αc

1...α
c
k are the

mixing probabilities (αc
m ≥ 0 and

∑k
m=1 α

c
m = 1) and θcm

is the set of parameters that defines the m-th component of
the mixture. In our work, y is a d-dimensional feature vector
associated to a training or test patch and
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(2π)−

d
2√

|Rc
m|

exp
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where θcm = (µc

m, R
c
m, α

c
m). Thus, the parameters to be esti-

mated when learning a mixture are the mean and covariance
of each component (µc

m, R
c
m) and the corresponding mixing

probabilities αc
m.
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The traditional approach to estimate these parameters is
the expectation-maximization (EM) algorithm. However, it is
not easy to select the best number of components of the mix-
tures using this algorithm. To deal with this issue Figueiredo
and Jain [15] proposed an approach to learn mixture models,
using a variant of the EM algorithm that implements the mini-
mum message length (MML) criterion as the cost function, in
order to automatically find the best number of components of
a mixture. The procedure tests all the component numbers in
{kmin, kmin + 1, ..., kmax − 1, kmax} using the component-
wise EM (CEM) for mixtures [18]. After achieving conver-
gence with a certain k, they set the component with smaller
α̂m to zero and rerun CEM until convergence. This task is
performed while k ≥ kmin and in the end, the estimated pa-
rameters as well as the number of components are those which
minimize the MML criterion. For a detailed description, see
[15].

4. COLOR ASSIGNMENT AND QUANTIFICATION

This section describes the methodology used to identify the
colors of a skin lesion. We adopt a hierarchical decision
scheme, involving two steps, namely patch labeling and le-
sion labeling.

We start by sampling the lesion into small patches of size
12 × 12 using a regular grid. Then, we compute a feature
vector to characterize each patch, using the mean color. To
assign a color label to each of the patches, we compute their
posterior probability of belonging to each of the color models
as follows

p(c|y) = p(y|c, θ̂c)p(c)
p(y|θ̂)

, (3)

where θ̂c = (µ̂c, R̂c, α̂c), θ̂ = (θ̂1, ..., θ̂5) and p(c) = 1/5
is set to be equal for all colors. Then, we sort the degrees of
membership and denote the color with the highest and second
highest values as c1and c2, respectively. Now, one of three
actions takes place

1. If p(c1|y) ≥ δ and p(c1|y) − p(c2|y) > ε, where δ
and ε are empirically determined thresholds, the patch
is labeled according to color c1.

2. If p(c1|y) ≥ δ and p(c1|y) − p(c2|y) ≤ ε, the patch
receives a label which expresses doubt between c1 and
c2.

3. If p(c1|y) < δ , the patch is rejected.

The final step consists of deciding whether a color is
present or absent in a lesion. This task is performed using
five empirically determined area ratio thresholds. Thus, each
color region is considered only if its area ratio is above a
specific threshold. The defined thresholds are 15% of the
lesion’s area for light brown, 5% for dark brown, 4% for
blue-gray and 2% for black and white. It is import to stress

that to compute the area ratios we only use the patches that
do not have doubt labels.

5. EXPERIMENTAL SETUP AND RESULTS

5.1. Experimental Setup

A total of 130 images selected from the PH2 database [19]
were used in this work. From this dataset, 27 images were se-
lected for training the color mixture models and the remaining
images were used for testing. The test set comprises three dif-
ferent types of skin lesions: 38 common nevi, 38 atypical nevi
(skin lesions which require follow up) and 27 melanomas.
These three classes were selected due to their different color
properties. The images are in RGB format and have an av-
erage size of 575×765. An experienced dermatologist was
asked to identify the colors present in each image. In the case
of the training images, the dermatologist was also asked to
segment the regions corresponding to each color and to avoid
overlapping different segmentations.

The procedure used to train and evaluate the proposed
system was the following. First, the five color models were
learned using three different configurations of feature vec-
tors: HSV only, La*b* only and the combination of these
two color spaces. Each time, the mixture learning algorithm
was initialized with kmax = 6 and kmin = 1. The ini-
tial values of the mixture components were computed as in
[15]. Source code for the learning algorithm is available at
http://www.lx.it.pt/ mtf/. In each case, the final mixture has
two to four components, depending on the color.

To evaluate the performance of the algorithm, its output
for a set of unseen images is compared with the labels pro-
vided by the dermatologist. Each color correctly identified
in an image is considered a correct detection (CD), a missed
color is a detection failures (DF), and a detected color that has
no corresponding label is a false alarms (FA). Global concor-
dance between the expert and the system was computed for
each color using Spearman’s rank correlation coefficient

ρ = 1− 6
∑
d2i

n(n2 − 1)
(4)

where di is the difference between the ranks of the expert la-
bel and the computer label, and n is the number of test images.

5.2. Results and Discussion

Tables 1 and 2 show the color detection results for the HSV
and La*b* spaces, respectively. For these two color spaces,
the number of CDs exceeds the proportion of both FAs and
DFs, which is very good.

The HSV color space seems to lead to an overall better
performance than La*b* since the ρ values are all signifi-
cantly large and more alike (mean ρ = 0.7534 against mean
ρ = 0.7257). Even so, La*b* seems to be more appropriate to
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Fig. 4. Output examples for Melanoma lesions: Original Image and ground truth labels (left); Output (right).

Table 1. Color detection results using HSV.

Nevi Atypical Melanoma
CD FA DF CD FA DF CD FA DF ρ

Blue Gray 1 3 0 4 8 0 19 5 2 0.7763
Dark Brown 18 3 3 33 2 1 21 4 3 0.7675
Light Brown 33 2 1 22 2 3 14 1 6 0.7851

Black 0 7 0 8 11 1 20 6 0 0.7107
White 0 4 0 0 5 0 6 13 1 0.7274

Table 2. Color detection results using La*b*.

Nevi Atypical Melanoma
CD FA DF CD FA DF CD FA DF ρ

Blue Gray 0 1 1 4 7 0 20 5 1 0.8102
Dark Brown 17 9 4 31 2 3 17 3 7 0.5922
Light Brown 33 1 1 25 3 0 14 1 6 0.8258

Black 0 1 0 7 5 2 11 3 9 0.7234
White 0 2 0 0 6 0 3 14 4 0.6768

describe the blue gray, black, and light brown colors, because
higher values of ρ are obtained with this space. It is interest-
ing to observe that the number of detections of back, white,
and blue gray is larger in atypical lesions and melanoma than
in nevi. This agrees with what can be found in medical the lit-
erature, where it is stated that these colors are more common
in atypical nevi and melanoma [20].

Combining the two spaces in the same feature vector
seems to be the best configuration, taking into account all
the ρ values (see Table 3) and the mean ρ value of 0.7981.
This fusion of color spaces seems to significantly reduce the
number of FAs. However, in the case of blue gray, the fusion
leads to a decrease in the number of CDs, and consequent

Table 3. Color detection results using HSV+ La*b*.

Nevi Atypical Melanoma
CD FA DF CD FA DF CD FA DF ρ

Blue Gray 1 0 0 4 7 0 15 5 6 0.7559
Dark Brown 21 0 0 30 2 4 24 3 0 0.8691
Light Brown 34 1 0 24 4 1 16 1 4 0.8399

Black 0 1 0 7 3 2 12 3 8 0.7675
White 0 1 0 0 4 0 4 10 3 0.7582

increase in DFs. Fig. 4 show some examples of the colors
detected in melanoma lesions using this hybrid configuration
of features. A thorough inspection of the doubt labels ob-
tained for all images showed that there are four labels which
are more common than the others: the blue gray-black doubt,
the blue gray-dark brown, the dark brown-black, and the dark
brown-light brown.

6. CONCLUSIONS AND FUTURE WORK

We proposed a new method for the detection of colors in der-
moscopy images, using Gaussian mixtures. Our experimental
results shown that the best results are achieved by combining
the information of the HSV and La*b* color spaces. Our re-
sults are promising, with 192 CDs, 45 FAs, 28 DFs, and an
average Spearman correlation of 0.7981, with respect to an
expert dermatologist.

The proposed strategy has potential and can be applied to
other tasks, such as the segmentation of dermoscopy images,
using statistical model describing the color of the skin.
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