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ABSTRACT

This paper introduces a new system for the automated clas-
sification of prostatic carcinomas from biopsy images. The
important components of the proposed system are (1) the
new features for tissue description based on hyper-complex
wavelet analysis, quaternion color ratios, and modified local
binary patterns; and (2) a new framework for multi-stage
learning that integrates both multi-class and binary classi-
fiers. The system performance is estimated by employing
Hold-out cross-validation in a dataset of 71 prostate cancer
biopsy images with different Gleason grades. Simulation
results show that the presented technique is able to correctly
classify images in 98.89% of the test cases. Furthermore, the
system is robust in terms of sensitivity (0.9833) and speci-
ficity (0.9917). We have demonstrated the efficacy of our
system in distinguishing between Gleason grades 3, 4 and 5.

Index Terms— Automated Gleason grading, multi-
classifier systems, histopathology image analysis, quaternion
features

1. INTRODUCTION

Prostate cancer (PCa) is the second most diagnosed cancer
among American men. It is estimated that about 233,000 new
cases will be diagnosed and 29,480 men will die of prostate
cancer in 2014 [1]. The gold standard method for the PCa
diagnosis is the analysis of needle biopsy tissue sections [2],
which consists of the visual evaluation of histopathology im-
ages and the assignment of Gleason grades. The Gleason
score, composed by the most predominant Gleason grades,
is the most important prognostic indicator for prostate can-
cer [3]. The Gleason grade characterizes the degree to which
the tumor resembles healthy tissue. Examples of histopathol-
ogy images of different Gleason patterns are shown in Figure
1.

The process of assigning Gleason grades to a histopathol-
ogy image is subjective and time-consuming due to its heavy
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reliance on physician interpretation and tissue complexity,
which often leads to high levels of intra- and interobserver
variability [4]. Intending to increase the reproducibility of
the grading process and to save pathologists time, several
computer-aided diagnosis (CAD) systems have been pro-
posed [5–13]. Each method has its own advantages and
shortcomings. In general, researchers have used a variety of
features obtained from textural, architectural, and morphome-
tric analysis to classify histopathology images. For instance,
Diamond et al. [5] employed glandular and nuclear area as
well as Haralick features. Tabesh et al. [14] used a combina-
tion color channel histograms, fractal analysis, and wavelets
along with color, texture, and morphometric properties of
histological objects in order to detect cancerous regions and
discriminate between low- and high-Gleason grades. Naik et
al. [6] developed a CAD system that extracts morphological
and Voronoi, Delaunay, and minimum spanning tree graphs
features in order to solve binary classification problems: be-
nign epithelium vs grade 3, benign epithelium vs grade 4, and
grade 3 vs grade 4. Huang et al. [7] proposed a set of fractal-
based features to classify cancerous patterns belonging to
Gleason 1 to 5. Nguyen et al. [8] employed statistics of size,
density and shape of tissue structures to classify benign tissue
and Gleason grades 3 and 4. Almuntashri et al. [9] presented
a method that combines features from wavelet transform and
wavelet-based fractal analysis.

Fig. 1. Examples of Gleason patterns 2-5

Although the aforementioned and other techniques have
been proposed so far, the development of new algorithms for
CAD of PCa is an open problem. The performance of grad-
ing/scoring systems has to be further improved, especially
when classifying intermediate Gleason patterns 3 and 4. De-
veloped systems should clearly demonstrate that the accuracy
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of interpretation of screening biopsy images with CAD is bet-
ter than the one without using CAD. Therefore, there is still
a long way to go before CAD systems for PCa become avail-
able commercially and widely used in clinics and screening
centers.

The goal of this paper is to introduce a new system for the
automated classification of prostatic carcinomas from biopsy
images in a reproducible manner using a multi-classifier
learning scheme. The rest of this paper is organized as fol-
lows: Section 2 introduces the new Gleason grading system
including discussion on feature extraction methods and clas-
sification scheme; Section 3 presents experimental results,
and Section 4 concludes the paper.

2. OVERVIEW OF THE PROPOSED PROSTATE
CANCER GRADING SYSTEM

In the literature, multi-class classification problems such as
PCa grading are tackled using two common approaches: (1)
one-shot classification (OSC), and (2) decomposition of the
problem into a set of binary problems. OSC is especially lim-
ited and may produce large classification errors when dealing
with multiple similar classes [12]. The second approach is
to build a system of multiple binary classifiers using one-vs-
all (OVA), one-vs-one (OVO), and simultaneous classification
[13]. Most of the published works on PCa grading use one of
the above mentioned approaches.

Another strategy to grade prostatic carcinomas was de-
veloped by Doyle et al. [12]. In their cascaded approach,
successive classications are performed, beginning with the
most broad (i.e. cancer detection) and proceeding to increas-
ingly granular separations (Gleason grading). However, the
reported simulation results show that the cascaded approach
only outperforms the OSC and OVA schemes in terms of the
positive predictive value (PPV).

In this work we present a new system for the assignment
of Gleason grades to prostate cancer histopathology images.
This is an extension of our previous works in [10,11] and pro-
vides an integrated framework for multi-class classification
that can be used in other applications. The general architec-
ture of the system with the specific components used for the
application discussed in this paper is illustrated in Figure 2.
The proposed system consists of a two-stage classifier. First,
we use OSC with a group of features to assign an initial label
to an input pattern. Second, the classification is refined by us-
ing several pairwise SVM classifiers, which are trained using
different feature vectors. The second level of the system is
activated only if two or more classes are close to each other,
producing large probability for classification error.

2.1. Feature extraction

In this work, we use six different feature extraction meth-
ods. Three new feature sets used with the Bayesian classifier

are computed from the quaternion wavelet transform (QWT)
coefficients, quaternion ratios, and the histograms of multi-
resolution local binary patterns. The remaining feature vec-
tors used with the two-class SVM classifiers are based upon
the discrete Haar wavelet transform, color fractal dimension,
and morphometric characteristics of the tissue, which were
previously developed by the authors in [10, 11].

2.1.1. Quaternion wavelet features

The QWT is a hyper-complex extension of the real wavelet
transform. It allows us to analyze the textural complexity of
images since the magnitude and local phase information con-
tains rich structural information. Although the QWT has been
applied to texture classification problems, it has not been ap-
plied to PCa grading before. More details about the compu-
tation of the QWT are given in [15]. As in the case of real
wavelet coefficients, the resulting QWT coefficients are sep-
arated into 4 sub-bands at each decomposition level, but they
are quaternion numbers of the form q = a + bi + cj + dk,
whose magnitude is given by |q| =

√
a2 + b2 + c2 + d2. We

construct the QWT feature vector with statistics (mean and
standard deviation) of the coefficients magnitude and phase
along with the energy of coefficients at each decomposition
level. The energy is computed as indicated below:

Es,j =
1

I0E

∑
x,y

|qx,y|p (1)

Es,j is the energy of the sub-band s = {1, 2, 3, 4} cor-
responding to approximation, horizontal, vertical, and diago-
nal sub-bands; and j = 1, 2, ...J is the QWT decomposition
level. I0E is a normalization term proportional to the energy
of the original input image; and p ≥ 2 is a real tuning param-
eter.

2.1.2. Quaternion ratio features

Quaternion representation is used in this section for represent-
ing a color triplet in the RGB color model. An RGB image
pixel is represented as a pure quaternion as q = Ri+Gj+Bk.
Then, each image is converted into a matrix of pure quater-
nion numbers of size M × N . For each pixel in the quater-
nion input image, a color descriptor is computed using a n×n
neighborhood of surrounded pixels. The value of n should be
an odd number and its minimum value is 5. The square neigh-
borhood is then divided into four overlapping sub-regions Ri

(as shown in Figure 3) that do not include the central pixel.
Next, the expected value of the quaternion numbers in each
sub-region is computed using the following expression:

E [qRi
] = E [RRi

] + E [GRi
] + E [BRi

] (2)

The local descriptor at a central pixel gc, located at the
position x, y, is computed as follows:
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Fig. 2. Flow diagram of the proposed multi-classifier system

QRBP (x, y) =

7∑
p=0

wpf (qc, qp) · 2p (3)

In equation (3),

qp =


E
[
qRp

]
if p = 0, 1, 2, 3

q (x− 1, y) if p = 4
q (x, y + 1) if p = 5
q (x+ 1, y) if p = 6
q (x, y − 1) if p = 7

(4)

The function f () is a thresholding function defined as:

f (qc, qp) =

 1 if
3∑

i=1

qp,i − qc,i ≥ T

0 otherwise
(5)

Finally, each wp =
qp
qc

is a quaternion ratio. The result-
ing quaternion weights wp incorporate interactions among the
different color channels. For instance, the dot product be-
tween color vectors represents intra-channel interactions and
the cross product represent inter-channel relationships.

After building the quaternion matrix representing the
pixel ratio and binary patterns, the singular value decompo-
sition (SVD) of the resulting matrix QRBP is computed to
generate the feature vector for image classification from the
singular values of the quaternion matrix. In this paper, we
use the complex adjoint matrix representation of a quaternion
matrix for quaterion SVD computation.

2.1.3. Multi-resolution local binary pattern features

A number of features are extracted based on a proposed mod-
ification of the local binary pattern (LBP) operator [16]. We
compute the feature vector by defining multi-resolution LBP
(MLBP) using low-resolution images resulting from applying

Fig. 3. Overlapping sub-regions

the discrete wavelet transform decomposition instead of vary-
ing the neighborhood radio. The value of the LBP code of a
center pixel gc in a 3× 3 neighborhood at the jth decomposi-
tion level is given by:

MLBP8,j (x, y) =

7∑
p=0

f (gp − gc) · 2p (6)

The function f (x) is defined as f (x) = 1 if x ≥ T ,
and f (x) = 0 otherwise. The described operation is per-
formed for values of T ∈ [0, 30]. In this work, we compute
the normalized histogram of uniform patterns for each color
channel independently and then we concatenate them. The fi-
nal MLBP feature vector is composed by the low-frequency
components of the resulting 1-D histogram signals.

2.1.4. Features for binary SVM classifiers

The features utilized with the SVM classifiers were developed
by the authors in [10, 11]. The first set [11] integrates color,
gland morphology and architectural characteristics of tissue
structures obtained after image segmentation. These vectors
are more effective when distinguishing Gleason grade 3 vs
4. The second set of features [10] is based on textural anal-
ysis. We extended the definition of color fractal dimension
to increase the separation between intermediate Gleason pat-
terns by generating a new color model and weighting func-
tions for the computation of the fractal dimension. Also, new
features were proposed based on the joint probability of color
channel wavelet coefficients in order to exploit inter-channel
dependencies. These feature vectors perform very well rec-
ognizing Gleason grade 4 vs 5. In this paper, we use the best-
performing features for each specific classification refinement
task.

2.2. Classification

For the multi-class problem we use a Bayes classifier [17].
However, any multi-class-capable classifier may be used.
Bayesian classifiers employ the Bayes theorem to estimate
the probability of an object represented by a feature vector x
of dimension D being in class cj by assuming independency
among features. If (x, cj), is a random variable with joint
probability p (x, cj), then the Bayes classifier select the class
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for an observation x as f (x) = argmax p (cj |x). The a pos-
teriori probabilities p (cj |x) are used to determine if the input
image should be processed by the SVM sub-systems. We
refine the classification outcome from the Bayesian classifier
if two or more classes have similar probabilities or if the most
probable classes are not contiguous Gleason patterns. We use
a softmax function to map the a posteriori class probabilities
to a finite interval [0, 1] and construct a discrete probability
distribution. From this distribution, we define whether or not
an image has to be reprocessed by the SVM stage, by setting
the minimum acceptable probability of the predicted class
to 65% and the minimum difference between the probability
of two or more classes to 10%. Furthermore, the two more
probable classes define the set of features that should be used
for classification refinement. For instance, the differentia-
tion between intermediate Gleason grades 3 and 4 is more
accurate using morphological features, whereas classification
tasks between Gleason grades 4 and 5 are more accurate us-
ing textural features because some important tissue structures
are not present or occluded. It is important to note that the
pool of classifiers in the refinement stage mostly perform a
single binary classification tasks between the most probable
classes.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Simulations were carried out on a database of 71 images of
Hematoxylin and Eosin (H&E)-stained prostate tissue. The
dataset contains 30 image regions of Gleason 3, 30 of Glea-
son 4, and 11 of Gleason grade 5. Since our image set is
small in size and unbalanced, for bayesian classification we
adjusted the prior probabilities according to the distribution
of classes in the database and selected the best performing
classification threshold using cross-validation. For all SVM
classifiers, we used linear kernel given the high dimension of
the feature spaces compared to the number of training sam-
ples. Hold-out cross-validation was employed to estimate the
performance of the system. The average correct classifica-
tion rate (CCR) and other indicators of system performance
at each classification stage including sensitivity, specificity,
positive predictive value (PPV) and negative predictive value
(NPV) [18] are summarized in Table 1.

From Table 1, it can be observed that the accuracy of
the multiclass classifier is improved after the refinement step.
The average accuracy increases from 83.78% to 98.89%. In
general, the performance indicators from the OSC step to
the following refinement step were improved or remained the
same in specific cases. The sensitivity value for the positive
group Grade 5, which is the worst performing indicator of the
Bayesian classifier reaches a remarkable 0.97 at the output of
the whole system, after classification refinement.

For comparison purposes, Figure 4 shows the reported ac-
curacy of various published Gleason grading systems. Note
that only the experiments reported by the authors of this pa-

Grade 3 Grade 4 Grade 5
Stage 1: OSC multi-class classification (Bayes classifier)
CCR 0.8000 0.8800 0.8333
Sensitivity 0.9800 0.7700 0.5200
Specificity 0.7100 0.9350 0.9051
PPV 0.7279 0.9051 0.9200
NPV 0.9928 0.9200 0.8400
Stage 2: Classification refinement (2-class SVM)
CCR 0.9833 0.9933 0.9900
Sensitivity 0.9800 1.0000 0.9700
Specificity 0.9850 0.9900 1.0000
PPV 0.9847 0.9900 1.0000
NPV 0.9933 1.0000 0.9900

Table 1. Performance of the proposed system, averaged over
100 simulation runs

per in [9–11] are directly comparable since the experiments
were carried out using the same database and experimental
protocols.

Fig. 4. Comparison of accuracy of Gleason grading systems

4. CONCLUSIONS

In this paper, we have developed a two-stage multi-classifier
system for the assignment of Gleason grades (3,4, and 5) to
H&E biopsy images. The system uses novel tissue descrip-
tors to represent textural characteristics of the histopathology
images. In this work, new quaternion features are introduced
in order to represent color images and capture intra- and in-
terchannel information that is often lost when color channels
are processed independently. The features used in our sys-
tem are combined such that each classification sub-system
achieves the best possible performance. The system correct
classification rate reaches 98.89% across all the considered
Gleason grades. This performance indicator outperforms the
accuracy of previously developed CAD systems for Prostate
cancer and demonstrates the efficacy of the developed fea-
ture vectors. The preliminary results of this research must
be validated using a larger cohort of images. We will focus
our future work on integrating the concept of semi-supervised
learning into the framework, which will allow us to train and
test the system using sets of available unlabeled data.
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