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ABSTRACT
Breath sounds have been shown very valuable for diagno-

sis of obstructive sleep apnea. In this study, we present a sub-
ject independent method for automatic classification of breath
and related sounds during sleep. An experienced operator
manually labelled segments of breath sounds from 11 sleep-
ing subjects as: inspiration, expiration, inspiratory snoring,
expiratory snoring, wheezing, other noise, and non-audible.
Ten features were extracted and fed into 3 different classi-
fiers: naı̈ve Bayes, Support Vector Machine, and Random
Forest. Leave-one-out method was used in which data from
each subject, in turn, is evaluated using models trained with
all other subject. Mean accuracy for concurrent classification
of all 7 classes reached 85.4%. Mean accuracy for separating
data into 2 classes, snoring and non-snoring, reached 97.8%.
To our knowledge, these are the highest accuracies achieved
in automatic classification of all breath sounds components
concurrently and for snoring, in a subject independent model.

Index Terms— Breath Sounds, Inspiration, Expiration,
Snoring, Obstructive Sleep Apnea, Pattern Classification

1. INTRODUCTION

Breath sound analysis, especially of snoring, has been used to
diagnose sleep-related respiratory disorders such as obstruc-
tive sleep apnea (OSA) [1, 2, 3]. OSA is a common respira-
tory condition, affecting approximately 7% of the adult popu-
lation [4]. OSA is characterized by repetitive interruptions of
breathing during sleep, each lasting for 10–90 seconds. Ob-
structive hypopneas and apneas results from partial or com-
plete collapse of the upper airway, respectively. OSA results
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in intermittent drops in blood-oxygen saturation and sudden
arousals from sleep that cause sleep fragmentation and poor
sleep quality. Patient with OSA, therefore, suffer from exces-
sive daytime sleepiness and impaired cognitive performance
and thus are at higher risk for motor vehicle accidents which
results in thousands of fatalities every year [5]. OSA increases
the risk of developing hypertension, heart failure, and stroke
by 2 to 4 fold compared to individuals without OSA [6, 7].
OSA is therefore a major public health problem whose diag-
nosis and treatment could have a substantial impact on public
health and health care cost [8].

OSA influences breath sounds due to its impact on the up-
per airway.The upper airway narrowing and collapse in OSA
causes the airflow to induce vibration of the upper airway tis-
sues whose common audible manifestation is known as snor-
ing [9]. It has been found that snoring that takes place in sim-
ple snorers has different harmonic and frequency distribution
[10] and different temporal regularity [1] in OSA than non-
apneic snorers. Even in the absence of snoring, the acoustic
signatures of inspiratory and expiratory sounds are also influ-
enced by the degree of upper airway narrowing [11, 12].

1.1. Relation to Prior Work

Different techniques for identifying respiratory conditions
have used different components of breath sounds depending
on the specific goal of the analysis. Many studies focused
on snoring alone to detect OSA [10, 1]. We have previously
examined non-snoring inspiratory sounds for the effects of
upper airway narrowing similar to that in OSA [11]. The
isolation of inspiratory sounds in that study was performed
manually. Manual annotation, however, is a labor-intensive
task and non-practical in real life applications, especially
when data is recorded overnight for 6 to 8 hours long per
patient. Therefore, an automatic and accurate system is re-
quired to classify reliably breathing sounds in new patients.
There has been several attempts towards achieving this goal.
In our previous work, we have accurately identified breath-
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ing phases (inspiration and expiration) [13, 14], but did not
take into account the abnormal sounds such as snoring and
other incidental sounds from the surrounding environment.
Studies by other groups have shown accuracies in identifi-
cation of snoring and related sounds, such as breathing and
silence, ranging between 82% to 93.2% from ambient mi-
crophones [15, 16, 17, 18]. In those studies, all non-snoring
breath sounds were treated as as one class, without separating
inspiration from expiration.

In this study, we extend the results achieved by us and
others to encompass all possible breathing sounds including
individual breathing phases. We hypothesize that discrimi-
nant classifiers can accurately identify relevant breath sounds
in the data of new subjects given appropriate temporal and
frequency acoustic features. The goal of this work was to de-
velop a subject-independent system for identifying all breath
sounds that could be deployed for practical usage.

2. METHODS

2.1. Data Acquisition and Labelling

Breath sounds were recorded from 11 subjects during overnight
sleep using an electret microphone in front of the face em-
bedded in a small open mask at a sampling rate of 16 kHz as
described in [19]. Five-minute segments (L) were extracted
from the first, middle, and last third of the overnight recording
of each subject. A total of 33 segments, yielding 165 minutes
of data, were extracted. An experienced annotator listened to
each segment and manually identified each sound unit as one
of: inspiration, expiration, snoring, wheezing, not-audible,
and other-noise. Wheezing is a high pitch musical sound.
Although it can rarely be detected at the upper airway level,
it was given a separate class for completeness. Snoring is
typically an inspiratory phenomenon, yet expiratory snoring
can also takes place in rare cases, in which case it should have
distinct acoustic characteristics. Therefore, a separate class
for expiratory snoring was created to yield a total of 7 classes.
For simplicity, the mere term ‘snoring’ herein will refer to
inspiratory snoring alone since it represents the majority of
snoring episodes.

2.2. Feature Extraction

Each L was segmented using a moving window of 64 ms with
50% overlap, herein referred to as (W ). From each W , the
following 10 features were extracted:

Periodicity: Autocorrelation-based methods have previ-
ously been used to detect snoring based on its semi-periodic
nature [3]. In this work, we adopt an autocorrelation-based
algorithm known as the robust algorithm for pitch tracking
(RAPT) [20]. RAPT calculates the periodicity of W as a
value between 0 and 1, denoting total randomness and com-
plete periodicity respectively.

Frequency bands ratio: We have shown that expiration
has most of its energy concentrated in the frequency band be-
low 400Hz and vice versa for inspiration [14]. In this work,
this feature is calculated as the ratio of frequency bin magni-
tudes below 400 Hz to those above 400 Hz.

Spectral centroid: This indicates the ‘center of spectral
mass’, which is perceptually related to the ‘brightness’ of a
sound and is given by:

N−1∑

n=0
f(n)x(n)

N−1∑

n=0
x(n)

(1)

where x(n) represents the magnitude of bin number n,
and f(n) represents the center frequency of that bin.

Flatness: This indicates whether the spectral distribution
is smooth or spiky, and results from the ratio between its ge-
ometric and arithmetic means, given by:

Flatness =
N

√∏N−1
n=0 x(n)

∑N−1
n=0 x(n)

N

(2)

where x(n) represents the magnitude of bin number n.

Shannon entropy is a measure of uncertainty of a random
variable X given by:

H(x) := −

n∑

i=1

p(xi)logbp(xi)

log(length(p))
(3)

where, p(xi) the probability mass function of X .

Zero crossing rate is the number of zero crossings (both
positive and negative) present in the segment normalized by
the length of the segment.

Uniformity: This measures the uniformity of the nega-
tive peak amplitudes of a windowed segment. The peaks are
obtained by estimating the local maximas and minimas. The
uniformity value is then defined by:

U =
std(peakneg)

mean(peakneg)
(4)

where peakneg are peaks following negative zero crossings.

Shimmer: Shimmer is standard time domain feature used
in speech processing that is quantified as:

Shimmer =

N−1∑

i=1

|X(n)−X(n + 1)|

N − 1
(5)
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where X is obtained by a 3rd-order median filtering of W .
Click factor: Clicks are defined as the sharp loud peaks

resulting from tissue collision as happens with snoring,
wether periodic or non-periodic. Clicks manifest as tran-
sient wide frequency bands in the spectrogram, analogous
to a step function. To identify this pattern, a pre-emphasis
filter is applied to spectra of W and short-time spectrograms
is obtained (window size=256 points [16ms] with 75% over-
lap). The frequency bins are then summed, which converts
the spectrogram from a 2 dimensional to a 1 dimensional
waveform. The latter is then de-trended to remove local off-
sets and the resulting waveform is herein defined as K. The
roughness of K reflects the occurrence of sharp transients in
the time domain (clicks). The click factor is quantified as:
C = mean((10×K)2).

Relative energy: The ratio of the root mean square of
W to the positive maximum signed 16 bit integer level was
defined as the ‘relative energy’ level for a given segment. This
is an expression of a signal’s energy as a proportion of its
allowed maximum amplitude.

2.3. Pattern Classification

Three classification methods are compared in this work: naı̈ve
Bayes (NB), support vector machine with sequential minimal
optimization (SVM), and random forest (RF). These three
methods differ greatly in the optimization of the parameters,
with both the SVM and RF models optimizing (separate)
discriminative criteria. The naı̈ve Bayes classifier assumes
conditional independence between its features, the SVM is a
parametric classifier that provides highly non-linear decision
boundaries given particular kernels. A polynomial kernel of
degree 2 is used herein. RF is an ensemble classifier that
returns the mode of the class predictions across several de-
cision trees. In this work, the RF uses the standard Breiman
algorithm with 5 trees. Parameters for the SVM kernel and
RF are set empirically.

2.4. Experiments

In order to ensure generality of the trained models, we im-
plemented the leave-one-subject-out cross validation method
(LOSOCV). Here all subjects data sets except one are used for
training, which is used for validation to obtain the accuracy of
identifying sound classes in that 1 subject. The process is then
repeated in such a way that each subject is used for validation
exactly once. The total accuracy is averaged over individual
scores. This approach tends to preclude effects of over-fitting
to the training data. This was done twice – once for the 7-
way classification of the classes described in section 2.1 and
once for the binary classification of snoring versus all other
sounds. Snoring was selected from among the other classes
as an exemplary class, since it has been shown as clinically
relevant signal of interest in many previous studies. Yet, any

one of the other classes, such as inspiration or expiration etc.,
can be equally chosen for this problem.

3. RESULTS

The mean values for the 10 acoustic features and their distri-
butions for 3 of the 7 classes are displayed in Figure 1. Many
of these features were in the expected ranges for the relevant
classes, as discussed latter. Accuracies across classifiers and
participants are shown in Table 1. The mean accuracy for dis-
tinguishing the 7 classes concurrently ranged between 79.7%
with NB and 85.40% with SVM. On the other hand, when
the problem was reduced to a 2-class problem (snoring vs
not-snoring), performance improved remarkably to between
94.9% with NB and 97.8% with RF. Expectedly, the discrim-
inative classifiers outperform NB, but the unprecedented high
accuracy of the latter may indicate that the selected features
are indeed highly informative to the identification of snores.

4. DISCUSSION

In this work, we have shown that individual components of
breath sounds can be identified with a high degree of accu-
racy using a totally subject-independent scheme. Accuracy
for identifying all breath and related sounds reached 85.4% in
the 7-class problem and 97.8% in the binary identification of
snores. Validation was performed using a LOSOCV scheme,
which shows that these results can be duplicated in practical
situations in which a trained system can be used to classify
breath sounds in new subjects. To our knowledge, this is the
first work that reports classification of all breath sounds in-
cluding snoring (inspiratory and expiratory), inspiration, ex-
piration, wheezing, in addition to non-respiratory noises. As
for snoring alone, this study achieved the highest classifica-
tion accuracy to date, according to our knowledge.

The current work expands the approaches of previous
studies that deployed an ambient microphone by identifying
all possible breath sounds components rather than snoring
alone. Although snoring has been the focus of most studies
that aimed at detecting OSA, other non-snoring breath sounds
still carry important information about the upper airway dy-
namics. For example, the upper airway is prone to narrowing
and collapse during inspiration more than expiration, due to
the negative lung pressure [11]. Both expiratory and inspira-
tory phases can be used for accurate tracking of breathing rate
and activities [13]. For all these reason, detection of breathing
components is needed for research and clinical purposes.

We have selected a group of features that characterize the
physical nature of breath sounds. Figure 1 displays the dis-
tribution of the 10 features across the most common breath
sounds. Periodicity for example was highest in snoring. Pe-
riodicity arises with snoring due to collision of tissue pliable
flaps of the upper airway, in contrast to the other sounds that

3607



Fig. 1. Display of the 10 features showing graphical distributions (histograms) of the 10 features across the 3 main sound
classes: expiration, inspiration, and snoring. Each figure is accompanied by its feature mean values in the 7 sound classes. Each
distribution curve was normalized to unity to facilitate visualization.
Exp: Expiration; Insp: Inspiration; Snor: Snoring; ExpSn: Expiratory Snoring; Whz: wheezing; OthNs: Other Noise; NoAd:
Not Audible

Table 1. Average and Median Accuracy achieved by LOSOCV for the 11 subjects
7-Class Classification Problem, Snoring vs Non-Snoring

Classifier P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Avg Med Std

NB 52.2 76.2 90.3 65.2 88.9 80.3 84.1 87.9 89.3 75.6 86.6 79.7 84.1 11.9
SVM 67.7 86.5 91.1 70.7 93.1 86.5 89.5 91.3 86.1 84.8 91.5 85.4 86.5 8.44
RF 56.4 87.1 84.3 74.6 91.4 87.8 88.7 92.1 86.6 85.6 89.6 84.0 87.1 10.3

2-Class Classification Problem

Classifier P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Avg Med Std

NB 88.0 94.7 98.0 94.0 99.1 97.5 92.4 99.5 95.5 88.2 97.0 94.9 95.5 4.0
SVM 92.1 97.2 97.7 93.8 99.8 97.9 97.9 99.8 91.4 94.5 99.6 96.5 97.7 3.0
RF 85.0 98.3 94.2 97.3 99.9 98.5 97.8 100.0 94.7 97.1 99.8 97.8 98.0 2.0
P1...11: Patients 1 to 11; Avg: Average; Med: Median; Std: Standard Deviation; NB: Naive Bayes; SVM: Support Vector Machines; RF: Random Forests

are turbulent in nature. The click factor was also highest in
snoring since it captures sharp tissue collisions regardless of
periodicity. On the other hand, expiration is characterized by
concentration of spectral energy in the lower bands, which re-
sulted in remarkably lower spectral centroid value than other
classes. Naturally, relative energy was lowest in the ‘not au-
dible’ class.

Table 1 shows noticeable differences in performance
across subjects. Subject P1, for example, had an especially
low accuracy across all classifiers. The data of this subject
contained atypically numerous instances of the class ‘expi-

ratory snoring’, which is not a commonly occurring sound.
This suggests that larger sets of representative training data
would be useful in improving the robustness of this method;
a limitation that should be addressed in future works.

Conclusion: This study is the first to present a compre-
hensive yet practical and pragmatic classification models that
takes in consideration all breath sounds and have proven to
achieve high performance in new unseen subject data. Fu-
ture studies will expand the work to include more represen-
tative subjects and examine the binary classification for other
classes besides snoring.
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