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ABSTRACT
A finite duration sequence exhibiting periodicities does not
in general admit a sparse representation in terms of the DFT
basis unless the period is a divisor of the duration. This pa-
per develops a dictionary called the Farey dictionary for the
efficient representation of such sequences. It is shown herein
that this representation is especially useful for identifying hid-
den periodicities in a finite data record. The properties of the
Farey dictionary are studied, and the dictionary is shown to be
superior to the conventional DFT based uniform dictionary,
from the view point of identifying hidden periods.

Index Terms— Farey dictionary, uniform DFT dictio-
nary, sparse reconstruction, hidden periodicities.

1. INTRODUCTION

Consider a finite duration signal x(n), 0 ≤ n ≤ q − 1 with
DFT X[k]. Suppose x(n) has the property

x(n) = x(n+N) (1)

for some integer N < q, and for all n such that the arguments
n and n+N are in [0, q−1]. Then we say thatN is the period
of x(n) assuming N is the smallest such integer. Suppose we
represent x(n) using the DFT as a basis:

x(n) =

q∑
k=1

αkW
nk
q (2)

Here Wq = e−j2π/q and αk = X[−k]/q (with k interpreted
modulo q). Then, depending on the period N, the coefficients
{αk} may or may not exhibit sparsity. For example suppose
N is a divisor of q, say q = 12 andN = 4, as in Fig. 1(a) (the
first period is highlighted for clarity). Then αk = 0 unless
k is a multiple of q/N . But if N is not a divisor of q, e.g.,
q = 12, and N = 5 as in Fig. 1(b), then αk can be nonzero
for all k because we do not have an integer number of periods
in the duration q. Thus the DFT is in general not an economic
representation in this case. For applications such as period
identification, or extraction of a periodic signal from noise, it
is desirable to have a more economic representation.

If a signal x(n) has the form x(n) = xN (n) + xM (n)
where xN (n) and xM (n) have period N and M (both < q)
respectively, then its period is the lcm of N and M (or pos-
sibly a divisor). If the data length q is less than this lcm (al-
though M,N < q), then the signal does not “look” periodic
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Fig. 1. (a) A 12-point sequence with hidden periodicity 4, and (b) A
12-point sequence with hidden periodicity 5. In the latter case x(n)
does not have an integer number of periods.

(see Fig 3 later). In this case we say thatN andM are the hid-
den periods. Identifying two or more hidden periods is more
challenging than identifying a single explicit period N < q,
which is rather straightforward.1

In this paper we address the problem of representing pe-
riodic signals (hidden or otherwise) in terms of a dictionary
which we call the Farey dictionary. This is motivated by the
well known Farey series in the theory of numbers [9]. We
can use sparse reconstruction techniques such as basis pur-
suit, Lasso, etc. [2]–[7], [14], [16] for the identification of
hidden periods, and compare the results with the use of a con-
ventional uniform-grid (DFT style) dictionary. The Farey se-
ries is reviewed briefly in Sec. 2. The Farey dictionary is
introduced in Sec. 3, and its properties are studied in Sec. 4,
including its Kruskal rank (which is crucial for its suitability
in sparse reconstruction). In Secs. 4, 5 we explain how the
Farey dictionary can be used to identify the hidden periodici-
ties, and compare this with the uniform dictionary. Examples
of this application are given in the end, which demonstrate
that the Farey dictionary is indeed well suited to identify hid-
den periods.

Notations: (a) (k,m) stands for the gcd of the integers k
and m. So (k,m) = 1 means that they are coprime. (b) N |q
means that N is a divisor of q. (c) φ(m) is the Euler totient
function (number of integers in 1 ≤ i ≤ m coprime to m)
[9]. (d) Finally Wq = e−j2π/q .

2. THE FAREY SEQUENCE

Given an integer q, consider all irreducible rational numbers
x = k/m (i.e., with (k,m) = 1) in the range 0 ≤ x ≤ 1,
with denominator m ≤ q. There is clearly a finite number of
them, namely 1+

∑q
m=1 φ(m). If these numbers are arranged

1If x(n) has a period N < q, then in absence of noise we can compute
∆(n) = x(n) − x(n−K) for K = 1, 2, . . . , to identify N . The smallest
K for which ∆(n) = 0 for K ≤ n ≤ q − 1 is K = N.
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in increasing order we get a sequence of rationals which we
denote as Fq. For example if q = 6 we get F6:
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This sequence Fq of rationals is called the Farey sequence of
order q (see [9]).2 Figure 2 shows the step by step construc-
tion of F6 from its definition. The Farey sequences F8, F10
and F14 are also shown.

Notice that if k/m is an element of Fq then so is (m −
k)/m because if (k,m) = 1 then so is (m− k,m) = 1. Thus
the elements in the array are symmetric with respect to 1/2 as
seen from the examples in Fig. 2. The term Farey array is ap-
plicable if we are building a linear array of sensors with these
sensor locations. In this paper our goal is to construct a dic-
tionary which discretizes the frequency (or parameter) space
using a Farey grid, and show that such a dictionary is useful
in the representation of signals with hidden periodicities.
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Fig. 2. (a) Step by step construction of the Farey sequence or ar-
ray F6. First, F1 = {0, 1} is shown. The individual arrays k/m
((k,m) = 1) for 2 ≤ m ≤ 6 are then shown, and their union F6 is
shown in the bottom. (b) Farey arrays for q = 8, 10, and 14.

3. FAREY DICTIONARY AS A FREQUENCY-GRID

The m-point DFT represents a signal in terms of a set Xm of
frequencies ωm(i) = 2πi/m, 1 ≤ i ≤ m. Consider the
union of all these frequencies, as m varies in the range 1 ≤
m ≤ q. The set Xm has m frequencies, but the union has less
than

∑q
m=1m frequencies because of overlap among the sets

Xm. To avoid this overlap, define the set Ym of frequencies

ωm(i) =
2πi

m
, (i,m) = 1, for 1 ≤ i ≤ m. (4)

2It is actually called the Farey series in the literature but since no summa-
tions are involved, it is appropriate to call it a sequence.

Then the sets Ym are disjoint for different m. Each set has
φ(m) elements. So the total number of distinct elements in
the set

Fq =

q⋃
m=1

Ym (5)

is

Φ(q)
∆
=

q∑
m=1

φ(m) (6)

For example if q = 6, then

Φ(6) = φ(1) + φ(2) + φ(3) + φ(4) + φ(5) + φ(6)

= 1 + 1 + 2 + 2 + 4 + 2 = 12 (7)

So F6 has 12 elements. Now define a column vector of size
q:

v(m, k) =


1
W k
m

W 2k
m
...

W
(q−1)k
m

 , (8)

and the q × φ(m) matrix

Vm =
[
v(m, k1) v(m, k2) . . . v(m, kφ(m))

]
(9)

where (m, ki) = 1 and 1 ≤ ki ≤ m. Based on this we define
the dictionary

A
(f)

q =
[
V1 V2 . . . Vq

]
(10)

which is a q × Φ(q) matrix. For example if q = 6 this dic-
tionary has the form shown at the top of the next page. (Even
though W 10

6 = W 4
6 , etc., we have kept the raw numbers in

the exponents for clarity.) This dictionary can be used to give
a representation for x in the form

x = A
(f)

q d (11)

Even though d is not unique for a given x, we can impose a
sparsity constraint on it to obtain efficient representations for
signals dominated by hidden periodicities.

Returning now to the dictionary (10) we see that the fre-
quencies covered by the columns of A

(f)

q have the form 2πf

where f ∈ Fq . So we refer to A
(f)

q as the Farey dictio-
nary. Since 2πf represents the same frequency for f = 0 and
f = 1, we can eliminate one of them. So the Farey dictionary
has Φ(q) =

∑q
m=1 φ(m) atoms.

4. APPLICABILITY OF FAREY DICTIONARY IN
SPARSE RECOVERY

Recall that the Kruskal rank ρ of a matrix is the largest integer
such that any set of ρ columns is linearly independent. It is
well known [7] that if the kruskal rank is ρ then we can solve
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A
(f)

6 =



m→ 1 2 3 3 4 4 5 5 5 5 6 6

1 1 1 1 1 1 1 1 1 1 1 1

1 W2 W3 W 2
3 W4 W 3

4 W5 W 2
5 W 3

5 W 4
5 W6 W 5

6

1 W 2
2 W 2

3 W 4
3 W 2

4 W 6
4 W 2

5 W 4
5 W 6

5 W 8
5 W 2

6 W 10
6

1 W 3
2 W 3

3 W 6
3 W 3

4 W 9
4 W 3

5 W 6
5 W 9

5 W 12
5 W 3

6 W 15
6

1 W 4
2 W 4

3 W 8
3 W 4

4 W 12
4 W 4

5 W 8
5 W 12

5 W 16
5 W 4

6 W 20
6

1 W 5
2 W 5

3 W 10
3 W 5

4 W 15
4 W 5

5 W 10
5 W 15

5 W 20
5 W 5

6 W 25
6



uniquely for d from (11) as long as d has sparsity s ≤ ρ/2.
(i.e., the number of nonzero elements in d is s ≤ ρ/2). We
now prove that A

(f)

q has full Kruskal rank.

Lemma 1. The q×Φ(q) dictionary A
(f)

q has Kruskal rank
q, i.e., it has full Kruskal rank. ♦

Proof. The column vector in Eq. (8) is a Vandermonde
vector, so the matrix A

(f)

q is a Vandermonde matrix. Fur-
thermore the first element W k

m in Eq. (8) is different for the
different columns in Vm because 1 ≤ k ≤ m. We now claim
that this first element is different for different columns in A

(f)

q

also. To see this assume

W k1
m1

= W k2
m2

(12)

where m1 < m2, and ki are such that (ki,mi) = 1 and 1 ≤
ki ≤ mi. Then Wm2k1

m1m2
= Wm1k2

m1m2
, or

m1k2 −m2k1 = lm1m2 (13)

for integer l. That is, m1k2 = m2l1 for some integer l1,
which implies k2/m2 = l1/m1. But since (k2,m2) = 1 and
m1 < m2, this is impossible. This shows that the Vander-
monde matrix A

(f)

q is such that the first element W k
m is dis-

tinct for any two columns. Since A
(f)

q has q rows, this proves
that any set of q columns in Af is linearly independent. That
is, A

(f)

q has Kruskal rank q. 555
Procedurally, how do we identify hidden periods with the

Farey dictionary? First assume the period is not hidden, that
is, x(n) = x(n + N), with N < q. Then it can be repre-
sented as x(n) =

∑N−1
k=0 αkW

nk
N for 0 ≤ n ≤ q − 1. As-

suming N ≤ q/2 (q being the Kruskal rank of A
(f)

q ), this
means that x can be represented as a linear combination of
N ≤ q/2 atoms in the dictionary. Since the Kruskal rank
is large enough we can identify these atoms using sparse re-
covery techniques. These atoms are Vandermonde vectors
generated by W k

N (where 0 ≤ k ≤ N − 1). In the dictio-
nary W k

N appears in the reduced form W ki
Ni

where Ni|N and
(Ni, ki) = 1. Thus, the largest of these Ni’s represents the
period N .

More interestingly, suppose the signal has two hidden
periods, that is, x(n) = xN (n) + xM (n) with M < N < q

but lcm(M,N) is larger than the data length q. This sig-
nal needs two sets of Vandermonde vectors from the dic-
tionary atoms: (a) W ki

Ni
where Ni|N and (Ni, ki) = 1,

and (b) W li
Mi

where Mi|M and (Mi, li) = 1. As long as
M + N ≤ q/2, we can identify the atoms. The hidden
periods M and N are the two unique integers in the set
S = {N1, N2, . . . , N,M1,M2, . . . ,M}, which are not divi-
sors of any other integer in S. So we can readily identify the
hidden periods. Since some of the WNi

might overlap with
some of the WMi

, we may not be able to separate out xM (n)
and xN (n) in general. For the special case where M and N
are coprime, we can separate them out except for a constant
(“DC”) term. If there are more than two periods, the idea
works similarly.

5. THE FAREY DICTIONARY VERSUS THE
UNIFORM DICTIONARY

The Farey dictionary A
(f)

q has size q×Φ(q). Notice that Φ(q)
is usually much larger than q. For example:

Φ(8) = 22,Φ(10) = 32,Φ(14) = 64,Φ(32) = 324, . . . (14)

It can be shown [9] that

Φ(q) =
3q2

π2
+O(q log q) (15)

So for large q, we have Φ(q) ≈ 3q2/π2. The dictionary A
(f)

q

therefore has O(q2) columns where q is the number of rows.
It gets fatter as q grows.

Now consider a dictionary of the same size q×Φ(q) con-
structed as follows: with WΦ(q) denoting the Φ(q) × Φ(q)
DFT matrix, simply retain the first q rows. For example, with
q = 6, this matrix is of size 6× 12 and is:

A
(u)
6 =



1 1 1 1 . . . 1 1

1 W12 W 2
12 W 3

12 . . . W 10
12 W 11

12

1 W 2
12 W 4

12 W 6
12 . . . W 20

12 W 22
12

...
...

... . . .
...

1 W 5
12 W 10

12 W 15
12 . . . W 50

12 W 55
12


(16)
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We shall call this the uniform (grid) dictionary because each
row contains successive powers of Wnl

Φ(q). So each row is a
Vandermonde vector, and so is each column. Clearly any set
of q columns is linearly independent and the uniform dictio-
nary also has Kruskal rank q.Notice by the way that the Farey
dictionary has Vandermonde columns but not Vandermonde
rows.

Given a q point signal x with hidden periodicity, suppose
we represent it with the dictionary A

(u)
q , that is

x = A(u)
q a (17)

How does this compare with the representation based on the
Farey dictionary, i.e.,

x = A
(f)

q d (18)

The lth column of the uniform dictionary represents a length
q signal of the form

W ln
Φ(q), 0 ≤ n ≤ q − 1 (19)

Even though l ranges from 0 to Φ(q) − 1 (equivalently 1 to
Φ(q)), a sparse representation results from the uniform dictio-
nary only when the periodicities are the divisors of Φ(q). But
the Farey dictionary can represent any hidden periodicity effi-
ciently (when the sum of hidden periods≤ q/2) because such
a signal can be fully represented by the union of the columns
of appropriate DFT matrices which are included in the Farey
dictionary. The following examples for signals with a sin-
gle, non-hidden period, already demonstrate the power of the
Farey dictionary:

Example 1. Let q = 42. Then Φ(q) = 542 = 2 · 271. The
factors of Φ(q) which are ≤ q/2 are 1 and 2. So the uniform
dictionary yields a sparse representation only for these two
periods. For other periods the representation is in general not
sparse. But the Farey dictionary is guaranteed to give a sparse
representation for 21 periods, namely 1 ≤ N ≤ 21.

Example 2. Let q = 32. Then Φ(q) = 324 = 22 · 34. The
factors of Φ(q) which are≤ q/2 are 1, 2, 3, 4, 6, 9, and 12. So
the uniform dictionary yields a sparse representation for these
7 periods. The Farey dictionary is guaranteed to give a sparse
representation for all the 16 periods, namely 1 ≤ N ≤ 16.

The procedure to identify periods N |q with the uniform
dictionary is as follows. Starting from the measurement x we
identify the sparse solution a for x = A

(u)
q a. So we know the

q/2 (or fewer) atoms of the dictionary that represent x. These
are Vandermonde atoms generated by W k

N = W
(Φ(q)/N)k
Φ(q) .

So, in the dictionary these are present in the column positions
which are multiples of Φ(q)/N . From this pattern, N can be
identified. If there are two hidden periods M and N (both
divisors of q), the procedure is similar.

Computer experiment: identifying hidden periods. We
consider a signal with hidden periods N = 12 and M = 15,
and total duration q = 59. Figs. 3 (a)–(c) show the signal
x(n) (vector x in Eqs. (17) and (18)), and the hidden peri-
odic components xM (n) and xN (n). The hidden periodicities
cannot be seen from the plot of x(n). Since Φ(q) = 1086, the
dictionaries have size 59 × 1086. Figs. 3(d)-(e) show a plot

of the components of d in the Farey representation (18)), and
those of a in the uniform representation (17). The vectors a
and d were identified using l1 minimization [4]. In presence
of noise, an algorithm like Lasso [16] will be more appro-
priate. We see that the Farey representation is much sparser
as expected (it uses 24 atoms whereas the uniform dictionary
uses 48). The first 74 coefficients of the Farey representation
(which includes all the 24 nonzero coefficients) are shown
separately in Fig. 3(f) for clarity. From the location of the
dictionary atoms which contribute to the nonzero components
of the Farey representation d, we can identify all the integers
m such that powers of Wm participate in this representation.
The set of all such m is: S = {1, 2, 3, 4, 5, 6, 12, 15}. The
only integers in this set which are not divisors of any other in-
teger in the set are 12 and 15. So the hidden periods N = 12
and M = 15 have been identified.

6. CONCLUDING REMARKS

In this paper we introduced the Farey dictionary, and showed
that it can be used to obtain a sparse representation for signals
with hidden periodicities. By using standard sparse recovery
techniques, we can identify the hidden periods. Notice that
if there are K hidden periods, then the Farey dictionary can
identify the integer K: it is equal to the number of elements
in S which are not divisors of other integers in S. For low
noise situations, the above method continues to work well,
when Lasso is used. For high noise scenarios, the representa-
tion is not sparse, and optimal thresholding techniques would
have to be introduced to extract the periodicity information.
This will be a topic for future research. The connection to
Ramanujan-sum expansions (see [15] and references therein)
and integer dictionaries will be explored in future. The rela-
tion to modern super resolution methods [5], sparse spectrum
sensing [8], and algorithms such as MUSIC [11], [13] also
remain to be explored.
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Fig. 3. (a) A signal x(n) = xM (n) + xN (n), with hidden periodic
components xM (n) and xN (n). (b), (c) The hidden periodic compo-
nents. (d) The sparse representation d(n) using a Farey dictionary.
(e) The representation a(n) using a uniform dictionary. (f) Zoomed-
in plot of the sparse representation d(n) using a Farey dictionary.
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