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ABSTRACT

While spike trains are obviously not band-limited, the theory
of super-resolution tells us that perfect recovery of unknown
spike locations and weights from low-pass Fourier trans-
form measurements is possible provided that the minimum
spacing, ∆, between spikes is not too small. Specifically,
for a cutoff frequency of fc, Donoho [2] shows that exact
recovery is possible if ∆ > 1/fc, but does not specify a
corresponding recovery method. On the other hand, Candès
and Fernandez-Granda [3] provide a recovery method based
on convex optimization, which provably succeeds as long as
∆ > 2/fc. In practical applications one often has access to
windowed Fourier transform measurements, i.e., short-time
Fourier transform (STFT) measurements, only. In this paper,
we develop a theory of super-resolution from STFT measure-
ments, and we propose a method that provably succeeds in
recovering spike trains from STFT measurements provided
that ∆ > 1/fc.

Index Terms— Super-resolution, inverse problems in
measure spaces, short-time Fourier transform.

1. INTRODUCTION

The recovery of spike trains with unknown spike locations
and weights from low-pass Fourier measurements, com-
monly referred to as super-resolution, has been a topic
of long-standing interest [4–11], with recent focus on `1-
minimization-based recovery techniques [3, 12, 13]. It was
recognized in [2, 3, 14–16] that a measure-theoretic formu-
lation of the super-resolution problem in continuous-time
not only leads to a clean mathematical framework, but also
to results that are “grid-free” [17]. This theory is inspired
by Beurling’s seminal work on the “balayage” of measures
in Fourier transforms [6, 7], and on interpolation using en-
tire functions of exponential type [8]. Specifically, Castro
and Gamboa [15], and Candès and Fernandez-Granda [3],
propose to solve a total variation minimization problem for
recovering a discrete measure (modeling the spike train)
from low-pass Fourier measurements. Despite its infinite-
dimensional nature, this optimization problem can be solved
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exploiting Fenchel duality, as described in [3, 14, 16]. Con-
cretely, it is shown in [3, 15] that the analysis of the Fenchel
dual problem leads to an interpolation problem, which can
be solved explicitly as long as the elements in the support
of the measure to be recovered are separated by at least
2/fc, where fc represents the cutoff frequency of the low-
pass measurements. Donoho [2] proves that a separation of
1/fc is sufficient for perfect recovery, but does not provide a
concrete method for reconstructing the measure. Kahane [1]
shows that recovery is possible if the minimum separation be-
tween spikes is at least 5

fc

√
log(1/fc), but this result suffers

from a log-factor penalty.
Contributions: In practical applications one often has ac-

cess to windowed Fourier transform, i.e., short-time Fourier
transform (STFT), measurements only. It is therefore of inter-
est to develop a theory of super-resolution from STFT mea-
surements. This is precisely the goal of the present paper.
Inspired by [2, 3, 14–16, 18], we use a measure-theoretic for-
mulation and consider the continuous-time case. Our main
result shows that exact recovery through convex optimization
is possible, for a Gaussian window function, provided that the
minimum separation between points in the measure support
exceeds 1/fc.

Notation and preparatory material: The complex con-
jugate of z ∈ C is denoted by z. The derivative of the
function ϕ is designated by ϕ′. The sinc function is defined
as sinc(t) := sin(t)/t for all t 6= 0 and sinc(0) = 1. Upper-
case boldface letters stand for matrices. The entry in the kth
row and `th column of the matrix M is mk,`. The superscript
H stands for Hermitian transposition. For matrices X,Y ∈
CM×N , we write 〈X,Y〉 := Re

{
Tr(YHX)

}
for their real

inner product. General linear operators are designated by up-
percase calligraphic letters. IfX and Y are topological vector
spaces, and X∗ and Y ∗ their topological duals, the adjoint of
the linear operator L : X → Y is denoted by L∗ : Y ∗ → X∗.
The set of all solutions of an optimization problem (P) is
denoted by Sol{(P)}. For a measure space (X,Σ, µ) and
a measurable function ϕ : X → C, we write

∫
X
ϕ(x)µ〈x〉

for the integration of ϕ with respect to µ, where we set
dx := λ〈x〉 if λ is the Lebesgue measure. For p ∈ [1,∞),
Lp(X,Σ, µ) denotes the space of all functions ϕ : X → C
such that ‖ϕ‖Lp :=

(∫
X
|ϕ(x)|p µ〈x〉

)1/p
< ∞. The space

L∞(X,Σ, µ) contains all functions ϕ : X → C such that
‖ϕ‖L∞ := inf{C > 0: |ϕ(x)| 6 C for µ-almost all x ∈
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X} < ∞. For functions ϕ ∈ Lp(X,Σ, µ) and ψ ∈
Lq(X,Σ, µ) with p, q ∈ [1,∞] satisfying 1/p + 1/q = 1,
we set 〈ϕ,ψ〉 := Re

{∫
X
ϕ(x)ψ(x)µ〈x〉

}
. For a separable

locally compact metric abelian group G (e.g., the additive
group R or the torus T := R/Z endowed with the natural
topology), we write Lp(G) in the particular case where Σ
is the Borel σ-algebra of G and µ the Haar measure on G.
We denote by B(G) the Borel σ-algebra of G and byM(G)
the space of all complex Radon measures on (G,B(G)). For
t ∈ G, δt ∈ M(G) designates the Dirac measure at t, which
for B ∈ B(G) is given by δt(B) = 1 if t ∈ B and δt(B) = 0
otherwise. The support supp(µ) of a complex Radon mea-
sure µ ∈ M(G) is the largest closed set C ⊆ G such that
for every open set B ∈ B(G) satisfying B ∩ C 6= ∅, it holds
that µ(B ∩ C) 6= 0. For every µ ∈ M(G), the total variation
(TV) of µ is defined as the measure |µ| satisfying

∀B ∈ B(G), |µ|(B) := sup
π∈Π(B)

∑
A∈π
|µ(A)|,

where Π(B) denotes the set of all partitions of B. The space
M(G) can be equipped with the TV norm ‖µ‖TV := |µ|(G).
Based on the Riesz representation theorem [19, Thm. 6.19],
M(G) can be characterized as the dual space of C0(G). With
Cc(G) the space of all complex-valued continuous functions
on G whose support is compact, C0(G) is the completion of
Cc(G) relative to the metric defined by the supremum norm
‖ϕ‖∞ = supt∈G |ϕ(t)|. By analogy with the real inner prod-
uct in L2(G), we define the real dual pairing of the mea-
sure µ ∈ M(G) and the function ϕ ∈ C0(G) as 〈µ, ϕ〉 :=

Re
{∫

G
ϕ(t)µ〈t〉

}
. We endowM(G) with the weak-* topol-

ogy [20], i.e., the coarsest topology onM(G) for which every
linear functional Lϕ : M(G)→ R defined by µ 7→ Lϕ(µ) =
〈µ, ϕ〉, with ϕ ∈ C0(G), is continuous.

2. STATEMENT OF THE PROBLEM

We consider a complex Radon measure on R of the form

µ =
∑
`∈Ω

a`δt` . (1)

The measure models a spike train, and is supported on the
closed discrete set T := {t`}`∈Ω ⊆ R with complex mass
a` 6= 0 attached to the point t`. The locations t` and the as-
sociated a` are assumed unknown throughout the paper. We
do, however, assume that the measure µ is known to be dis-
crete. The set Ω is assumed to be countable, and we require
that

∑
`∈Ω |a`| < ∞ for µ to be in M(R). Throughout the

paper, µ designates exclusively the measure defined in (1).
Suppose we obtain measurements of µ in the time-

frequency domain in the form:
y(τ, f) = (Vgµ)(τ, f)

for τ ∈ R and f ∈ Bfc := {f ∈ R : |f | 6 fc}, where fc is
the cutoff frequency and

(Vgµ)(τ, f) :=

∫
R
g(t− τ)e−2πiftµ〈t〉 (2)

denotes the STFT [21] of µ with respect to the window func-
tion g. Although our theory applies to more general window
functions taken from the Schwartz space of rapidly decaying
functions, for concreteness, we choose g to be Gaussian, i.e.,

∀t ∈ R, g(t) =
1√
σ

exp

(
− t2

2σ2

)
,

where σ > 0 is a parameter controlling the width of the win-
dow. We wish to recover the measure µ from the measure-
ments y by solving the following optimization problem:

(SR) minimize
ν∈M(R)

‖ν‖TV subject to y = Agν,

where Ag : M(R) → L1(R2) maps ν ∈ M(R) to the func-
tion ϕ ∈ L1(R2) such that

∀(τ, f) ∈ R2, ϕ(τ, f) =

{
(Vgν)(τ, f), f ∈ Bfc
0, otherwise.

The motivation for considering time-frequency measurements
is twofold. First, signals are often partitioned into short time
segments and windowed for acquisition. Second, the fre-
quency characteristics of the signal modeled by the measure
µ often vary over time, i.e., the t`, ` ∈ Ω, can be more packed
in certain intervals, so that time-localized spectral informa-
tion about µ will lead to improved reconstruction quality for
the same frequency limitation.

3. RECONSTRUCTION FROM COMPLETE
MEASUREMENTS

Before embarking on the problem of reconstructing µ by solv-
ing (SR) for a given fc < ∞, we need to convince ourselves
that reconstruction is possible from complete measurements,
i.e., for fc = ∞. This should be evident as the STFT, de-
fined for functions in L2(R), is invertible [21]. The measure-
theoretic STFT considered here is, however, non-standard.
While one can show that the STFT of a measure still deter-
mines the underlying measure uniquely in the sense that, for
ν ∈M(R), Vgν = 0 implies ν = 0, to the best of our knowl-
edge, no general inversion formula is available for complex
Radon measures. Since µ is discrete, all we need to find is its
support T = {t`}`∈Ω and the corresponding complex masses
{a`}`∈Ω. Specifically, it can be shown that µ can be recovered
from its STFT Vgµ according to

lim
F→∞

1

2F

∫ F

−F

∫
R

(Vgµ)(τ, f)g(t− τ)e2πiftdτdf

=

{
a`, if t = t`
0, otherwise.

4. RECONSTRUCTION FROM PARTIAL
MEASUREMENTS

Now, we consider the reconstruction of µ from band-limited
STFT measurements using (SR). Since the space M(R) is
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infinite-dimensional, the existence of a solution of (SR) is
delicate. It turns out, however, that relying on the convex-
ity of the TV norm ‖·‖TV and on compactness of the unit
ball {ν ∈ M(G) : ‖ν‖TV 6 1} with respect to the weak-*
topology, the result provided in [20, Cor. 3.20] ensures the ex-
istence of a solution of (SR). Next, with the help of Fenchel
duality theory [22, Chap. 4], we derive necessary and suffi-
cient conditions for µ to be the unique solution of (SR).

Theorem 1 (Fenchel predual) The Fenchel predual prob-
lem of (SR) is

(PD-SR) maximize
c∈L∞(R2)

〈c, y〉 subject to
∥∥A∗gc∥∥∞ 6 1.

In addition, the following equality holds

min
{
‖ν‖TV : Agν = y, ν ∈M(R)

}
= sup

{
〈c, y〉 :

∥∥A∗gc∥∥∞ 6 1, c ∈ L∞(R2)
}
. (3)

Moreover, if (PD-SR) has a solution c0 ∈ L∞(R2), then⋃
ν0∈Sol{(SR)}

supp(ν0) ⊆ {t ∈ R :
∣∣(A∗gc0)(t)

∣∣ = 1}. (4)

Theorem 1 follows by application of [22, Thms. 4.4.2 and
4.4.3] similarly to what was done in [14, Prop. 2]. We empha-
size that (PD-SR) is the predual problem of (SR), meaning
that (SR) is the dual problem of (PD-SR). The dual problem
of (SR) is, however, not (PD-SR) as the space L1(R2) is not
reflexive.

The consequences of Theorem 1 are the following: As-
suming that (PD-SR) has a solution, which we denote by
c0 ∈ L∞(R2), the support T = {t`}`∈Ω of the measure µ
to be recovered must satisfy

∣∣(A∗gc0)(t`)
∣∣ = 1 if µ is to be in

the set of solutions of (SR). Furthermore, if (PD-SR) has a
solution c0 ∈ L∞(R2) such that

∣∣A∗gc0∣∣ is not identically 1 on
R, then every solution to (SR) is a discrete measure despite
the fact that (SR) is an optimization problem over the space
of all complex Radon measures. This can be seen as follows:
Both the window function g and A∗gc0 can be extended to en-
tire functions which we also denote by g and A∗gc0, i.e.,

∀z ∈ C, g(z) =
1√
σ

exp

(
−πz

2

2σ2

)
and

(A∗gc0)(z) =

∫ fc

−fc

∫
R
c0(τ, f)g(z − τ)e2πifzdτdf. (5)

We can then define the function

∀z ∈ C, h(z) := 1− (A∗gc0)(z)(A∗gc0)(z).

Since
∣∣A∗gc0∣∣ is not identically 1 on R, h is not identically

zero. Consequently, on the basis of [19, Thm. 10.18] the set
{z ∈ C : h(z) = 0}, and a fortiori the set {t ∈ R :

∣∣A∗gc0∣∣ =
1}, are at most countable and have no limit points. But since
(4) holds, this implies that any solution ν0 to (SR) must have

discrete support, and therefore, ν0 is necessarily a discrete
measure.

Similarly to [16, Sec. 2.4], the following theorem provides
a necessary and sufficient condition for µ to be a solution of
(SR).

Theorem 2 (Optimality conditions) The measure µ to be
recovered is in the set of solutions of (SR) if and only if there
exists c0 ∈ L∞(R2) such that∥∥A∗gc0∥∥∞ 6 1 and ∀` ∈ Ω, (A∗gc0)(t`) =

a`
|a`|

.

It is important to note that (PD-SR) has at least one solu-
tion if the measure µ to be recovered is a solution of (SR), as
the sup in (3) is attained for c0. Indeed, the following holds:

〈c0, y〉 = 〈c0,Agµ〉 =
〈
A∗gc0, µ

〉
=

∫
G

(A∗gc0)(t)µ〈t〉

=
∑
`∈Ω

a`(A∗gc0)(t`) =
∑
`∈Ω

|a`| = ‖µ‖TV .

Since
∥∥A∗gc0∥∥∞ 6 1, c0 is a solution of (PD-SR).

Theorem 2 provides conditions on µ to be a solution
of (SR). However, we hope for more, namely, we want
conditions on µ to be the unique solution of (SR). Such
conditions are given in the following theorem, which is a
straightforward adaptation of [3, App. A].

Theorem 3 (Uniqueness) If for every sequence ε = {ε`}`∈Ω

of unit magnitude complex numbers, there exists a function
c0 ∈ L∞(R2) obeying

∀` ∈ Ω, (A∗gc0)(t`) = ε` (6)

∀t ∈ R\T,
∣∣(A∗gc0)(t)

∣∣ < 1, (7)

then µ is the unique solution of (SR).

Verifying the conditions of Theorem 3 requires solving
constrained interpolation problems associated with the sup-
port set T = {t`}`∈Ω of µ, as specified by (6) and (7). The
following theorem provides conditions ensuring that these so-
lutions can be given in explicit form.

Theorem 4 (Exact recovery) Let σ = 1
4fc

. If the minimum
distance ∆ between any two points of T ,

∆ = inf
`,`′∈Ω
` 6=`′

|t` − t`′ | ,

satisfies ∆ > 1/fc , then the conditions of Theorem 3 are met,
and, hence, µ is the unique solution of (SR).

We next briefly describe the main ingredients of the proof
of Theorem 4, which is mostly inspired by [3, Sec. 2, pp. 15–
27]. The proof is accomplished by verifying the conditions of
Theorem 3. To this end, we fix a sequence ε = {ε`}`∈Ω of
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complex unit-magnitude numbers, and take a function c0 ∈
L∞(R2) of the form

c0(τ, f) :=
∑
`∈Ω

[
α`g(t` − τ)e−2πift`+β`g

′(t` − τ)e−2πift`
]

for (τ, f) ∈ R2, where α = {α`}`∈Ω and β = {β`}`∈Ω are
sequences in `∞(Ω). The function A∗gc0 is thus given by

∀t ∈ R, (A∗gc0)(t) =
∑
`∈Ω

α`G(t− t`) sinc(2πfc(t− t`))

+
∑
`∈Ω

β`G
′(t` − t) sinc(2πfc(t− t`)), (8)

where G designates the autocorrelation of g, that is,

∀t ∈ R, G(t) =

∫
R
g(τ)g(t+ τ)dτ = exp

(
− πt

2

4σ2

)
.

Next, we determine sequences α and β such that the interpo-
lation conditions (A∗gc0)(t`) = ε` are satisfied and A∗gc0 has
a local extremum at every t`, ` ∈ Ω. The coefficients α` play
the main role in interpolating the points (t`, ε`). The coeffi-
cients β` add a correction term to ensure that A∗gc0 does not
exceed 1 on R. To conclude the proof, we finally show that
(7) holds.

We can see from (8) how the windowing in the STFT
helps to improve the recovery guarantee in Theorem 4 com-
pared to recovery based on unwindowed Fourier measure-
ments, as considered in [3, Sec. 2]. Specifically, in the case of
unwindowed Fourier measurements, the interpolation func-
tion A∗c0 must be a Paley-Wiener function [19, Thm. 19.3],
while here A∗gc0 is clearly not band-limited due to Gaussian
windowing and therefore has better time-localization. This,
in turn, allows the minimum separation ∆ to be smaller.

5. SIMULATIONS

For the simulation results we consider the recovery of the dis-
crete complex measure µ =

∑
`∈Ω a`δt` ∈ M(T) over the

torus T (the set Ω is then finite). The Gaussian window func-
tion is periodized so that for all t ∈ R,

g(t) =
∑
n∈Z

1√
σ

exp

(
−π(t+ n)2

2σ2

)
=
∑
n∈Z

gne
2πint, (9)

with gn :=
√

2π exp
(
−2πσ2n2

)
, n ∈ Z. The dual group

of T is Z. The corresponding STFT measurements of µ are
given by the sequence {yk}fck=−fc of functions

∀τ ∈ T, yk(τ) :=
∑
`∈Ω

a`g(t` − τ)e−2πikt` =
∑
n∈Z

yk,ne
2πinτ,

where yk,n :=
∑
`∈Ω a`gne

−2πi(n+k)t` is the nth Fourier co-
efficient of yk. Using Parseval’s theorem, the objective func-
tion for (PD-SR) can be rewritten as

〈c, y〉 =

fc∑
k=−fc

∑
n∈Z

ck,nyk,n,
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Fig. 1: Success rate for support recovery from (unwindowed)
Fourier measurements and from STFT measurements with
fc = 50 and N = 50.

where ck,n denotes the nth Fourier coefficient of ck ∈ L∞(T)
for |k| 6 fc. The function A∗gc can be expressed as

∀t ∈ T, (A∗gc)(t) =

fc∑
k=−fc

∑
n∈Z

gnck,ne
2πi(k+n)t.

In order to render the problem (PD-SR) finite-dimensional,
we approximate the function g in (9) by keeping only 2N + 1
Fourier coefficients, that is, we replace g by

∀t ∈ T, g̃(t) =

N∑
n=−N

gne
2πint,

where N is chosen large enough for the coefficients gn, |n| >
N , to be small. The objective of (SR) then is 〈C,Y〉, where
C := (ck,n)|k|6fc,|n|6N and Y := (yk,n)|k|6fc,|n|6N . The
functionA∗gc becomes a trigonometric polynomial which can
be expressed as

fc+N∑
m=−(fc+N)

xme
2πimt with xm =

nmax∑
n=nmin

gmcm−n,n,

where nmin := max{−N,m−fc} and nmax := min{N, fc+
m}. We can now apply a procedure similar to the one de-
veloped in [3, Sec. 4, pp. 31–36] to solve (PD-SR) and to
reconstruct the corresponding solution of (SR).

To assess the performance of our recovery procedure, we
run 1500 trials. For each ∆, we construct a discrete Radon
measure µ supported on the set T = {t`}S`=0 with S =
b1/(2∆)c and t` = 2`∆+r`, where r` is chosen uniformly at
random in [0,∆]. Thus, the minimum distance between two
distinct points of T is at least ∆. The complex amplitudes are
obtained by choosing their real and imaginary parts uniformly
at random in [0, 1000]. If the reconstructed measure µ̂ has
support T̂ = {t̂`}`∈Ω satisfying ‖T̂ − T‖`2/‖T‖`2 6 10−3,
we declare success. The corresponding results are depicted
in Fig. 1. As predicted by our theoretical results, we, indeed,
observe a factor-of-two improvement in the case of recovery
from STFT measurements relative to recovery from unwin-
dowed Fourier measurements as in [3, Sec. 2]. Note, however,
that time-frequency measurements provide more information
than frequency-only measurements as considered in [3].
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[21] K. Gröchenig, Foundations of Time-Frequency Analysis,
ser. Appl. Numer. Harmonic Anal., J. J. Benedetto, Ed.
Boston, MA, USA: Birkhäuser, 2000.
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