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ABSTRACT

Video representation is an important and challenging task in
the computer vision community. In this paper, we assume
that image frames of a moving scene can be modeled as a
Markov random process. We propose a sparse coding frame-
work, named adaptive video dictionary learning (AVDL), to
model a video adaptively. The developed framework is able
to capture the dynamics of a moving scene by exploring both
sparse properties and the temporal correlations of consecutive
video frames. The proposed method is compared with state of
the art video processing methods on several benchmark data
sequences, which exhibit appearance changes and heavy oc-
clusions.

Index Terms— Dynamic textures modeling, sparse rep-
resentation, dictionary learning, linear dynamical systems.

1. INTRODUCTION

Temporal or dynamic textures (DT) are image sequences that
exhibit spatially repetitive and certain stationarity properties
in time. This kind of sequences are typically videos of pro-
cesses, such as moving water, smoke, swaying trees, moving
clouds, or a flag blowing in the wind. Study and analysis of
DT is important in several applications such as video segmen-
tation [3], video recognition [12], and DT synthesizing [5].

One classical approach is to model dynamic scenes via the
optical flow [10]. However, such methods require a certain
degree of motion smoothness and parametric motion models
[3]. Non-smoothness, discontinuities, and noise inherence to
rapidly varying, non-stationary DTs (e.g. fire) pose a chal-
lenge to develop optical flow based algorithms. Another tech-
nique, called particle filter [4], models the dynamical course
of DTs as a Markov process. A reasonable assumption in DT
modeling is that each observation is correlated to an underly-
ing latent variable, or “state”, and then derive the parameter
transition operator between these states.
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Some approaches directly view each observation as a s-
tate, and then focus on transitions between the observation-
s in the time domain. For instance, the work in [13] treats
this transition as an associated probability problem, and oth-
er methods construct a spatio-temporal autoregressive model
(STAR) or position affine operator for this transition [14, 11].

Differently, feature-based models capture the intrinsic law
and underlying structures of the data by projecting the orig-
inal data onto a low-dimensional feature space via feature
extracted techniques, such as principle component analysis
(PCA). G. Doretto et al. [12, 5] model the evolution of the
dynamic textured scenes as a linear dynamical system (LD-
S) under a Gaussian noise assumption. As a popular method
in dynamic textures, LDS and its derivative algorithms have
been successfully used for various dynamic texture applica-
tions [5, 12]. However, constraints are imposed on the types
of motion and noise that can be modeled in LDS. For instance,
it is sensitive to input variations due to various noise. Espe-
cially, it is vulnerable to non-Gaussian noise, such as missing
data or occlusion of the dynamic scenes. Moreover, stability
is also a challenging problem for LDS [2].

To tackle these challenges, the approach taken here is to
explore an alternative method to model the DTs by appeal-
ing to the principle of sparsity. Instead of using the Principle
Components (PCs) as the transition “states” in LDS, sparse
coefficients over a learned dictionary are imposed as the un-
derlying “states”. In this way, the dynamical process of DTs
exhibits a transition course of corresponding sparse events.
These sparse events can be obtained via a recent technique
on linear decomposition of data, called dictionary learning
[6, 9]. Formally, these sparse representations x ∈ Rk to a
signal y ∈ Rm, can be written as

y = Dx

where D ∈ Rm×k is a dictionary, and x is sparse, i.e. most of
its entries are zero or small in magnitude. That is, the signal
y can be sparsely represented only using a few elements from
some dictionary D.

In this work, we start with a brief review of the dynam-
ic texture model from the viewpoint of convex `2 optimiza-
tion, and then deduce a combined regression associated with
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several regularizations for a joint process—“states extraction”
and “states transition”. Then we treat the solution of the
above combined regression as an adaptive dictionary learn-
ing problem, which can achieve two distinct yet tightly cou-
pled tasks— efficiently reducing the dimensionality via sparse
representation and robustly modeling the dynamical process.
Finally, we cast this dictionary learning problem as the opti-
mization of a smooth non-convex objective function, which is
efficiently resolved via a gradient descent method.

2. ADAPTIVE VIDEO DICTIONARY LEARNING

In this section, we start with a brief introduction to the lin-
ear dynamical systems (LDS) model and develop an adaptive
dictionary learning framework for sparse coding.

2.1. Linear Dynamical Systems

Let us denote a given sequence of (n + 1) frames by Y :=
[y0, . . . , yn] ∈ Rm×(n+1), where the time is indexed by i =
0, 1, . . . , n. The evolution of a LDS is often described by the
following two equations{

xi+1 = Axi + wi
yi = Dxi + vi,

(1)

where yi ∈ Rm, xi ∈ Rk, wi ∈ Rk and vi ∈ Rm denote
the observation, its hidden state or feature, state noise, and
observation noise, respectively. The system is described by
the dynamics matrix A ∈ Rk×k, and the modeling matrix
D ∈ Rm×k. Here we are interested in estimating the system
parameters A and D, together with the hidden states, given
the sequence of observations Y .

The problem of learning the LDS (1) can be considered as
a coupled linear regression problem [2]. Let us denote X =
[x0, . . . , xn] ∈ Rk×(n+1), X0 = [x0, . . . , xn−1] ∈ Rk×n,
and X1 = [x1, . . . , xn] ∈ Rk×n. The system dynamics and
modeling matrix are expected to be caught by solving the fol-
lowing minimization problem,

min
A,D,X

∥∥X1 −AX0

∥∥2

F
s.t.

∥∥Y −DX∥∥2

F
≤ ε, (2)

where ε is a small positive constant. In our approach, we
assume that all observations yi admit a sparse representation
with respect to an unknown dictionary D ∈ Rm×k, i.e.

yi = Dxi, for all i = 0, 1, . . . , n, (3)

where xi ∈ Rk is sparse. Without loss of generality, we fur-
ther assume that all columns of the dictionary D have unit
norm. We then define the set

S(m, k) := {D ∈ Rm×k|ddiag(D>D) = Ik}, (4)

where ddiag(Z) is the diagonal matrix whose entries on the
diagonal are those of Z, Ik denotes the identity matrix. The

set S(m, k) is the product of k unit spheres, and is hence a
k(m − 1) dimensional smooth manifold. Finally, by adopt-
ing the common sparse coding framework to problem (2), we
have the following minimization problem

min
A,D,X

∥∥X1 −AX0

∥∥2

F
+ µ1

∥∥Y −DX∥∥2

F
+ µ2‖X‖1, (5)

where D ∈ S(m, k), ‖ · ‖F denotes the Frobenius norm of
matrices, and ‖ · ‖1 is the `1 norm, which measures the over-
all sparsity of a matrix. The parameter µ2 > 0 weighs the
sparsity measurement against the residual errors.

2.2. A Dictionary Learning Model for Dynamical Scene

Solving the minimization problem as stated in Eq. (5) is a very
challenging task. In this work, we employ an idea similar to
subspace identification methods [2], which treat the state as a
function of (A,D). Here, we confine ourselves to the sparse
solution of an elastic-net problem, which is proposed in [16],
as

x∗ := argmin
x∈Rk

1
2‖y −Dx‖

2
2 + λ1‖x‖1 + λ2

2 ‖x‖
2
2, (6)

where λ1 > 0 and λ2 > 0 are regularization parameters,
which play an important role in ensuring stability and unique-
ness of the solutions. Let us define the set of indices of the
non-zero entries of the solution x∗ = [x∗1, . . . , x

∗
k]> ∈ Rk as

Λ := {i ∈ {1, . . . , k}|x∗i 6= 0}. (7)

Then the solution x∗ has a closed-form expression as

x∗y(D) :=
(
D>ΛDΛ − λ2Im

)−1 (
D>Λ y − λ1sΛ

)
, (8)

where sΛ ∈ {±1}|Λ| carries the signs of x∗Λ, DΛ is the subset
of D in which the index of atoms (rows) fall into support Λ.
Furthermore, it is known that the solution x∗y(D) as given in
(8) is a locally twice differentiable function atD. By an abuse
of notation, we define

X0 : S(m, k)→Rk×n

D 7→ [x∗y0(D), . . . , x∗yn−1
(D)].

(9)

In a similar way, X1 : S(m, k)→ Rk×n is defined. Thus,
the cost function reads as

f : Rk×k × S(m, k)→R

(A,D) 7→ 1
2 ‖X1(D)−AX0(D)‖2F .

(10)

It is known that an LDS with the dynamic matrixA is said
to be stable, if the largest eigenvalue ofA is bounded by 1 [2].
Let σ be the largest eigenvalue of A, then |σ| ≤ ‖A‖F . Thus,
we enforce the small σ via imposing a penalty ‖A‖2F on (10),
and then end up with the cost function as

f̃ : Rk×k × S(m, k)→R
(A,D) 7→ f(A,D) + γ

2 ‖A‖
2
F ,

(11)
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2.3. Development of the Algorithm

In this section, we firstly derive a gradient descent algorithm
to minimize (11) and then discuss some details of the choice
of the parameters in the final implementation.

We start with the computation of the first derivative of the
sparse solution of the elastic-net problem x∗y(D) as given in
(8). Given the tangent space of S(m, k) at D as

TDS(m, k) := {X ∈ Rm×k|ddiag(X>D) = 0}, (12)

the orthogonal projection of a matrix H ∈ Rm×k onto the
tangent space TDS(p, n) with respect to the inner product
〈X,Y 〉 = tr(X>Y ) is given by

ΠD(H) := H −D ddiag(D>H). (13)

Let us denote K := D>ΛDΛ−λ2Ik. The first derivative of x∗y
in the direction H ∈ TDS(m, k) is

Dx∗y(D)H =K−1H>Λ y −K−1(D>ΛHΛ

+H>ΛDΛ) ·K−1
(
D>Λ y − λ1sΛ

)
.

(14)

By the product structure of Rk×k×S(m, k), the Rieman-
nian gradient of the function f̃ is

grad f̃(A,D) =
(
∇f̃ (A),ΠD

(
∇f̃ (D)

))
. (15)

Here, the Euclidean gradient∇f̃ (A) of f̃ with respect to A is
computed as

∇f̃ (A) = (AX0(D)−X1(D))X0(D) + γA, (16)

with ei being the i-th standard basis vector of Rn. Us-
ing the shorthand notation, ri := D>Λi

yi − λ1sΛi
, ∆xi :=

x∗yi(D) − AΛi
x∗yi−1

(D), and qi := ri∆x
>
i , the Euclidean

gradient ∇f̃ (D) of f̃ with respect to D is

∇f̃ (D) =

n∑
i=1

yi(∆xi)
>K−1

i −DΛiK
−1
i (qi + q>i )

·K−1
i − yi−1(∆xi)

>AΛi
(Ki−1)−1 +DΛi−1

· (Ki−1)−1(AΛi−1
qi−1 + q>i−1A

>
Λi−1

)(Ki−1)−1.

(17)

For a gradient search iteration on manifolds, we employ
the following smooth curve on S(m, k) throughD ∈ S(m, k)
in direction H ∈ TDS(m, k)

τ : (−λ, λ)→ S(m, k)

t 7→(D + tH)
(

ddiag((D + tH)>(D + tH))
)− 1

2
(18)

with λ > 0. It essentially normalizes all columns of D+ tH .
For a detailed overview on optimization on matrix manifold,
refer to [1].

Algorithm 1: Adaptive Video Dictionary Learning
1: Training data Y
2: Initialize the parameters λ1,λ2,γ, initial dictionary D,

and initial transition matrix A.
3: for i = 1, 2, . . . , T do
4: Sparse Coding Stage

Use Lasso algorithm to compute x via
x← min

x

1
2‖y −Dx‖

2
2 + λ1‖x‖1 + λ2

2 ‖x‖
2
2

Compute the active set Λ for each x.
5: Compute the gradient of f̃(A,D) according to (16)

and (17).

6: Update the parameters A and D

Ai ← Ai−1 − ρi∇f̃ (Ai−1),

Di ← Di−1 − ρi∇f̃ (Di−1).

7: end for
8: return A and D

Until now, we have computed the gradient of f̃ as defined
in (11) with respect to its two arguments D and A. An itera-
tive scheme (such as the gradient descent method or conjugate
gradient method) can be used to find the optimalD andA, us-
ing the gradient expression above. The procedure displayed
in Algorithm (1) is the version of AVDL based on gradient
descent procedure. The learning rate ρi can be computed vi-
a the well-known backtracking line search method, similar to
[9]. Here, considering the high coherence among the temporal
frames, we prefer non-redundant dictionary, that is, k � m
for the dictionary D ∈ Rm×k. For parameters (λ1, λ2) in the
elastic net, we put an emphasis on sparse solutions and choose
λ2 ∈ (0, λ1

10 ), as proposed in [16].

3. NUMERICAL EXPERIMENTS

We carry out a few experiments on natural image sequences
data, and demonstrate the practicality of the proposed algo-
rithm. Our test dataset comprises of videos from DynTex++
[7], and data from internet sources (for instance, YouTube).
Firstly, we show the performance on reconstruction and syn-
thesizing with a grayscale video of burning candle, which is
corrupted by Gaussian noise or occlusion. This video has
1024 frames with size of 32 × 32, see figure 1. The initial
dictionary is 1024 × 512. After the acquisition of the dic-
tionary D and the transition A, the synthesized data can be
generated easily by xi+1 = Axix

>
i xi(x

>
i xi)

−1, or more pre-
cisely, using a convex formulation

min
xi+1

1

2
‖xi+1 −Axi‖22 + λ‖xi+1‖1.

Table 1 shows the performance of synthesizing on burn-
ing candle with Gaussian noise. The error pairs (ex, ey) are
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Table 1. Synthesizing results on sequence of burning candle.

Instance LDS, (PCs) AVDL, γ = 0.5, (loops)
64 128 256 1 50 100 200 400

Compression rate (%) 6.25 12.50 25.00 1.02 3.29 3.41 3.50 3.55
σ 0.9802 0.9833 0.9849 1.78 1.06 0.9992 0.9994 0.9994
ey 1.35× 105 1.35× 105 1.35× 105 1.36× 103 60.29 58.82 55.97 71.27
ex 101.58 135.88 168.95 3.75× 104 171.99 75.52 61.96 46.18

(a) Corrupted original sequence (b) Reconstructed sequence

(c) Synthesized video using LDS and AVDL on DTs with Gaussian noise

(d) Synthesized video using LDS and AVDL on DTs with missing data

Fig. 1. Reconstruction and synthesizing on the candle scene. (a),
(b) are (i = 1, 64, 128, 512, 1024)th frame of the corrupted da-
ta by Gaussian noisy and the reconstructed data using AVDL, re-
spectively. (c) The top row is the synthesized sequence using LD-
S (128PCs), and the bottom row is the synthesized sequence using
AVDL ((i = 2, 1024, 3072, 5120, . . . , 20480)th frame). (d) The
top row is the sequence with missing data. The middle row the syn-
thesized sequence using LDS, and the bottom row is the synthesized
sequence using AVDL.

defined as ey =
∑
i ‖yi−Dxi‖, ex =

∑
i ‖xi+1−Axi‖, and

the largest eigenvalue of A is denoted by σ. The compression
rate for AVDL is sparsity of x to m × (n + 1), and for LDS
is number of PCs to m. Table 1 shows AVDL can obtain the
stable dynamic matrix A (σ ≤ 1), smaller compression rate
and smaller error (ex, ey) of cost function (5), by increasing
the numbers of main loops in Algorithm 1.

Figure 1 (a ∼ c) is the visual comparison between LDS
and AVDL. AVDL performs well on denoising against cor-
ruption by Gaussian noise. In the case of occlusion in figure 1
(d), random 50 frames of the 1024 burning candle video are
corrupted by a (6 × 7) rectangle. The length of both synthe-
sizing data is 1024, based on first frame of the burning candle.
87.01% of the synthesizing data from LDS are corrupted by
this rectangle, but 9.47% for AVDL.

The second experiment is about scenes classification on
DynTex++, which contains DTs from 36 classes. Each class

Table 2. DT recognition rates for videos with occlusion.
Occlusion rate (%) 0 5 15 30
LDS-NN (128PCs) 69.72 45.00 25.14 14.17
AVDL-SRC 70.28 64.72 44.44 22.36

has 100 subsequences of length 50 frames with 50×50 pixel-
s. 20 videos are randomly chosen in each class and total 720
videos are used for our experiments. Classification for LDS is
performed using the Martin distance with a nearest-neighbor
classifier on its parameters pair (A,D) [12]. Another classi-
fier is AVDL associated with the sparse representation-based
classifier (SRC) [15, 8], in which the class of a test sequence
is determined by the smallest reconstruction error ey and tran-
sition error ex. Table 2 provides the recognition results with
increasing occlusion rates for test data. Compared to LD-
S with nearest-neighbor classifier (LDS-NN), Table 2 shows
the proposed AVDL with SRC (AVDL-SRC) performs better
while the test videos are corrupted by increasing occlusion.

4. CONCLUSIONS

This paper proposes an alternative method, called AVDL, to
model the dynamic process of DTs. In AVDL, the sparse
events over a dictionary are imposed as transition states. The
proposed method show a robust performance for synthe-
sizing, reconstruction and recognition on DTs corrupted by
Gaussian noise. Especially, AVDL exhibits more powerful in
the case of test data with non-Gaussian noise, such as occlu-
sion. One possible future extension is to learn a dictionary
for large scale DT sequences based on AVDL.
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[11] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graph-
cut textures: image and video synthesis using graph cuts. In
Graphics (TOG), ACM Transactions on, volume 22, pages
277–286. ACM, 2003.

[12] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic tex-
ture recognition. In Computer Vision and Pattern Recognition.
IEEE Computer Society Conference on, volume 2, pages II–
58. IEEE, 2001.
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