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ABSTRACT

Sparse representations of images in well-designed dictionaries
can be used for effective classification. Meanwhile, training data
available in most realistic settings are likely to be exposed to geo-
metric transformations, which poses a challenge for the design of
good dictionaries. In this work, we study the problem of learning
class-representative dictionaries from geometrically transformed im-
age sets. In order to efficiently take account of arbitrary geometric
transformations in the learning, we adopt a representation of the dic-
tionaries in an analytic basis. Then, the proposed algorithm learns
atoms that are attracted to the samples of their own class while being
repelled from the samples of other classes so that the discrimination
between different classes is promoted. The dictionary learning ob-
jective is formulated such that it enhances the class-discrimination
capabilities of individual atoms rather than the ones of the subspaces
they generate, which renders the designed dictionaries especially
suitable for fast classification of query images with very sparse ap-
proximations. Experimental results demonstrate the performance of
the proposed method in handwritten digit recognition applications.

Index Terms— Dictionary learning, image classification,
transformation-invariance.

1. INTRODUCTION

Dictionaries adapted to the characteristics of the signals of interest
generally facilitate their processing, analysis or coding. Many image
processing problems such as image compression, inpainting, and de-
noising [1], [2], or image classification [3], [4], [5], benefit from
sparse representations in well-designed dictionaries. Meanwhile,
in real applications, the image data at hand are seldom perfectly
aligned. Therefore, the learning of dictionaries in a way that is in-
variant to the geometric transformations of available training data is
critical in a variety of practical scenarios. Transformation-invariance
in dictionary learning has been addressed in several previous works,
which however only target invariance to specific geometric transfor-
mations; e.g., translations [6], [7], scale changes [8], [9], or rotations
and scalings [10].

In this work, we study the particular problem of transformation-
invariant dictionary learning for image classification. Given a set of
training images with known class labels, we learn a dictionary for
each class by taking into account the geometric transformations un-
dergone by the training images as well. The atoms in the learned dic-
tionaries approximate well the data samples of their own class while
they also contain features that are discriminative between different
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classes, leading to a good classification performance. The dictionar-
ies are learned in an analytic form by computing their representations
in an analytic basis. This is especially useful for handling arbitrary
types of geometric transformations of the training data, since com-
mon geometric transformations are very often representable in an
analytic form and can be integrated directly into the formulation of
the dictionary learning objective. Furthermore, the representation of
dictionaries in an analytic basis is also desirable from storage and
coding perspectives, as the number of basis vectors that is sufficient
to compute a good atom is usually much smaller than the dimension-
ality of the image space. The studies in [16], [17], and [18] are some
other works focusing on the representation of signals with analytic
or parametric atoms.

Besides achieving invariance to geometric transformations, an
important difference of our method from classification-based dictio-
nary learning algorithms such as [4] is that atoms are individually
computed such that each atom has the purpose of providing a good
representation of a particular region of the image space where the
risk of misclassification is high. Hence, our dictionary learning al-
gorithm leads to accurate representations of images even with their
1-sparse approximations in the dictionary. This makes our method
especially suitable for applications where a high-speed estimation of
class labels of query images is desired, since the 1-sparse approxima-
tion of an image in a dictionary can be computed much faster than
its approximation with several atoms. In this sense, our approach
contrasts with most dictionary learning algorithms for classification
such as [3], [4], in which the focus is on subspaces generated by
atoms rather than the individual characteristics of the atoms, or, sev-
eral recent studies such as [14], [15], which propose to classify data
based on subspace or union-of-subspace models. Finally, as far as
the test stage is concerned, where each image is represented with a
single atom, the proposed method bears some resemblance to vector
quantization algorithms for classification [11], [12], [13]. However,
the main difference between our dictionary learning method and vec-
tor quantization is in the training phase. In vector quantization, the
mapping between the training data samples and the learned exem-
plars (codewords) is many-to-one, whereas in dictionary learning a
training data sample can be used in the learning of more than one
atom.

2. PROBLEM FORMULATION

Let U = {Um}Mm=1 be a collection of geometrically transformed
images from M classes, where the set Um = {umi } consists of la-
beled image samples umi ∈ Rn from class m. We consider that the
images in U have been transformed according to some geometric
transformation model parametrizable with vectors λ ∈ Λ in a trans-
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formation parameter domain Λ. The vector λ typically represents
a geometric transformation such as a rotation, scale change, affine
transformation, etc., or a combination of such transformations.

We then would like to learn a dictionary Dm for each class such
that Dm = {dml }Ll=1 ⊂ Rn consists of L atoms. The design of
a particular dictionary Dm for each class m, rather than learning
a common dictionary for all classes, has the purpose of allowing
a simple estimation of the class labels of query images based on
their reconstruction errors yielded by their 1-sparse approximations
in the learned dictionaries. Note that in a setting where the spatial
complexities of images vary very much between different classes,
one can select a different number of atomsL1, ..., LM for each class.
Given a query image u, which can be assumed to be aligned or non-
transformed for the simplicity of formulation, we consider that the
class label m̂ of u is estimated with respect to its reconstruction error
in the learned dictionaries as

m̂ = arg min
m=1,...,M

‖u−
LX
l=1

cml dml ‖. (1)

Here cm = [cm1 . . . cmL ] is a coefficient vector representing a sparse
approximation of u in Dm. Since we aim at a fast classification of
u, we focus on the case where cm is 1-sparse, i.e., ‖cm‖0 = 1.
Our purpose is then to design the dictionaries {Dm} such that the
classification rule in (1) gives an accurate estimation.

While attaining a good discrimination power between different
classes with 1-sparse representations, we also would like to learn the
dictionaries in a transformation-invariant manner in order to reduce
their dependence on the geometric transformations of the training
images in U . In order to handle geometric transformations in a con-
venient way, we represent each atom dml ∈ Rn as the discretization1

of a two-dimensional analytic function φml (x, y) ∈ L2(R2). Let
φ ∈ L2(R2) be the analytic representation of an atom d ∈ Rn and
φλ denote the geometrically transformed version of φ by λ. We con-
sider geometric transformation models where the two atoms can be
related as φλ(x, y) = φ(aλ(x, y)) with a bijection aλ : R2 → R2

representing the coordinate mapping defined by the transformation
λ. We then denote by dλ the discretized version of φλ in Rn.

We propose to learn the atoms dml ∈ Dm of the m-th class by
minimizing an objective function of the form

f(d) =
X

i∈Imm
l

‖umi − dλm
i
‖2

−
X

j∈{1,...,M}\{m}

ηj
X
i∈Imj

l

‖uji − dλj
i
‖2.

(2)

Here Imjl is the set consisting of the indices of the images from the
j-th class U j that are used in the computation of the atom dml . The
scalars ηj’s adjust the weights of different classes in the optimiza-
tion of the atoms from class m. The parameter λji is the geometric
transformation applied to the atom d in order to compensate for the
transformation undergone by the training image uji . Provided that
the index sets Imjl are chosen suitably, the objective function in (2)
encourages the selection of atoms that are good representatives of
the images of their own class that are concentrated in a particular re-
gion of the image space, while they are pushed away from the nearby
samples from other classes in order to reduce misclassifications. In
Section 3, we discuss the selection of the parameters of the objective
function (2) and its minimization.

1We discretize a function simply by sampling it on a regular grid within a
rectangular support that captures a substantial part of its energy.

3. DICTIONARY LEARNING ALGORITHM

We first initialize the dictionaries {Dm} as follows. We compute
the centroid of each set Um, m = 1, . . . ,M , and then initialize the
atoms of one class with the training images of other classes that are
the most distant to the centroids of their own classes. This initial-
ization strategy has the purpose of providing an initial bias to sam-
ple effectively the regions of the image space where images from
different classes get critically close to each other. It is usually pos-
sible to obtain a better initialization from roughly aligned versions
of training images. An important design parameter in the dictionary
learning is the dictionary size L, which should be chosen according
to the trade-off between the accuracy and complexity constraints in
the targeted classification application.

We then update the atoms of the dictionaries {Dm} in a sequen-
tial way, by minimizing the objective in (2) individually for each
atom. We select the index sets Imjl by identifying a predefined num-
ber of images from each class that have the highest correlation with
the atom dml . We prefer such an approach instead of the classical
sparse coding step in dictionary learning algorithms for the follow-
ing reasons. First, since we have multiple dictionaries and classes,
it is quite costly to compute the sparse coding of all training im-
ages in all dictionaries, whereas the above approach is much faster.
Second, and more importantly, this strategy of choosing the index
sets Imjl together with the form of the cost function in (2) mimics
a sparse coding stage with only one atom, which is consistent with
our purpose of accurate classification with 1-sparse representations
in the learned dictionaries. Next, λji ’s can be set according to an
estimation of the geometric transformations undergone by the train-
ing images, which can be obtained by aligning uji ’s with a reference
class-representative image for example. However, one may explore
more sophisticated strategies to fine tune them, e.g., with an alter-
nating optimization of the atoms and the transformation parameters.

We now discuss the minimization of (2). First, we adopt a repre-
sentation of the atoms in terms of Hermite 2D functions [19], which
provides an efficient way to compute analytic atoms as they form an
orthonormal basis for the space of square-integrable functions. Let
{hk(x, y)}∞k=0 denote the basis of Hermite 2D functions ordered
with respect to increasing degrees of the Hermite polynomials used
in their construction [19]. We approximate atoms φ with a finite
number s of elements from the Hermite basis as

φ(x, y) =

sX
k=1

αk hk(x, y) (3)

where αk are the coefficients of the basis vectors. The parameter s
can typically be chosen according to the resolution of the discrete
representation in Rn. The transformed version φλ of φ is given by

φλ(x, y) = φ(aλ(x, y)) =

sX
k=1

αk hk(aλ(x, y)) (4)

where hk(aλ(x, y)) are geometrically transformed Hermite func-
tions. Now let Hλ ∈ Rn×s be a matrix such that the k-th column of
Hλ is obtained by discretizing hk(aλ(x, y)). We can then represent
the discrete transformed atom dλ as

dλ = Hλ α (5)

where α ∈ Rs×1 is the vector whose k-th entry is αk. Due to the
linearity of geometric transformations, the untransformed version d
of the atom dλ can be represented with the same coefficients α as

d = H α
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where H is the matrix constructed from the untransformed Hermite
functions {hk(x, y)}sk=1. This shows that the coefficients α provide
a transformation-invariant representation of atoms.

We can now reformulate the objective function (2) as a function
of the coefficients α of the atom d in the Hermite basis as follows.

f(α) =
X

i∈Imm
l

‖umi −Hλm
i
α‖2

−
X

j∈{1,...,M}\{m}

ηj
X
i∈Imj

l

‖uji −Hλj
i
α‖2

(6)

Rearranging f(α), we get

f(α) = αTAα− 2bTα+ c (7)

where

A =
X

i∈Imm
l

HT
λm

i
Hλm

i
−

X
j∈{1,...,M}\{m}

ηj
X
i∈Imj

l

HT

λ
j
i
H
λ

j
i

b =
X

i∈Imm
l

HT
λm

i
umi −

X
j∈{1,...,M}\{m}

ηj
X
i∈Imj

l

HT

λ
j
i
uji

c =
X

i∈Imm
l

(umi )T umi −
X

j∈{1,...,M}\{m}

ηj
X
i∈Imj

l

(uji )
T uji .

(8)

The function f(α) is strictly convex and has a unique minimum if
A is a positive definite matrix. We thus select the class weights ηj
sufficiently small to make A positive definite2. One can observe
from (2) that selecting the weights in this manner in fact causes the
attraction of an atom to the samples of its own class to be stronger
than its repulsion from the samples of other classes. This enables the
selected atoms to be good representatives of their own class, while
they are also encouraged to have features that are distinctive between
different classes. Once the weights are set, the coefficients α are then
easily computed by solving∇f = 0, which yields

α = A−1b. (9)

This gives the untransformed version of the computed atom as dml =
Hα, which is then updated in the dictionary Dm. We continue the
updates on the atoms in this manner until some stopping criterion is
met. In our implementation, we terminate the algorithm based on
the number of iterations. In particular, due to the proposed strat-
egy of initializing the dictionaries in a specific way by prioritizing
class-separation boundaries, we have experimentally observed that
terminating the algorithm after a single iteration yields a good clas-
sification performance as it is useful for retaining the diversity of the
atoms within a particular class. The proposed method is summarized
in Algorithm 1.

4. EXPERIMENTAL RESULTS

We now study the performance of the proposed method in image
classification. We evaluate our method on a data set of handwritten
“2, 3, 5, 8, 9” digit images generated from the MNIST database [20]
by applying geometric transformations. Each digit is considered as a
different class and the training images in each class are obtained with
geometric transformations composed of a rotation and an anisotropic

2In practice, we have obtained good results by choosing all ηj equally and
assigning them one quarter of the smallest η value that makes the smallest
eigenvalue of A vanish.

Algorithm 1 Dictionary Learning for Fast Classification (DLFC)
1: Input: Training images U = {Um}
2: Initialization:
3: Estimate transformation parameters {λmi } of training images
4: Initialize dictionaries {Dm} with training images most distant

to the centroids of {Um}
5: repeat
6: for m = 1, . . . ,M do
7: for l = 1, . . . , L do
8: Determine index sets {Imjl } for atom dml
9: Compute Hermite coefficients α of dml according to (8)

and (9)
10: Update dml = Hα
11: end for
12: end for
13: until stopping criterion
14: Output: Class-representative dictionaries {Dm}
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Fig. 1. Dependence of the misclassification error on the accuracy
of the estimation of transformation parameters. In the parameter
estimation error, 100% corresponds to an error of π/6 in the rotation
angle θ, and an error of 0.1 in the scale factors sx and sy .

scale change. The transformation parameters of training images are
randomly selected from the parameter ranges θ ∈ [−π/3, π/3] for
the rotation angle; and sx, sy ∈ [0.7, 1.2] for the scaling factors in
the x and y-directions.

We first examine the influence of the accuracy of the initial esti-
mation of the transformation parameters {λmi } on the performance
of classification. We experiment on 200 training and 200 test im-
ages in each class, and learn a dictionary of 100 atoms for each
class with the training images. The sizes of the index sets are cho-
sen as |Imml | = 7, and |Imjl | = 3 for j 6= m in the algorithm.
The dictionaries are first learned with the correct values of the trans-
formation parameters (used in the generation of the data sets) and
then by corrupting the transformation parameters with an error in or-
der to simulate parameter estimation errors. The parameter estima-
tion errors are selected uniformly at random from an interval, whose
range is increased gradually throughout the experiment. Test images
are then classified with respect to the reconstruction errors of their
1-sparse approximations in the learned dictionaries as in (1). We
compare the proposed Dictionary Learning for Fast Classification -
DLFC method with the reference method of learning a dictionary for
each class with the KSVD algorithm. KSVD is applied on aligned
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Fig. 2. Atoms learned with DLFC and KSVD

versions of the training images using the same transformation pa-
rameters as DLFC. The sparsity parameter of KSVD is set to 40,
which gives the best results. In Figure 1, the misclassification rate
of test images in percentage is plotted with respect to the transfor-
mation parameter estimation error, which is obtained by averaging
the results of four instances of the experiment with different training
and test sets. The results show that the proposed DLFC method per-
forms better than KSVD in fast image classification with 1-sparse
approximations. While the classification performance of the learned
dictionaries is seen to have some sensitivity to the accuracy of the
transformation parameter estimates, the evolution of the misclassifi-
cation rate with the parameter estimation error is seen to be similar
with the reference KSVD method. In a further experiment where
we initialized both algorithms with estimates of the transformation
parameters computed by aligning the training images with respect
to a reference image from each class, we have also observed a very
similar difference between the performances of DLFC and KSVD.
The sensitivity of the learned dictionaries to parameter estimation
errors can possibly be overcome by integrating the alignment in the
dictionary learning, which remains as a future direction of research.
Figure 2 provides a visual comparison between the outputs of DLFC
and KSVD respectively, where 10 sample atoms are shown from the
dictionary of each class. While the atoms learned with KSVD are
only approximative of their own class, the atoms learned with DLFC
are seen to also include components that increase their distance to
the samples of other classes, improving thus the distinction between
different classes.

We then study the relation between the classification error and
the number of atoms L. We learn dictionaries of different sizes with
DLFC and KSVD with the correct transformation parameters and
use them to classify test images with 1-sparse approximations as in
the previous setting. Figure 3 shows the variation of the misclas-
sification rate with the number of atoms. It is observed that the
classification performance of the dictionaries learned with KSVD
approaches that of DLFC as the dictionary size increases; however,
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Fig. 3. Variation of the classification error with dictionary size.

DLFC yields considerably better results at small dictionary sizes.
This shows the benefit of the proposed method for applications de-
manding a high-speed classification of query patterns, where limita-
tions on the dictionary size would be of particular concern.

In this study, we have evaluated our method on handwritten digit
data. Meanwhile, the proposed method is expected to perform sim-
ilarly with other data types as well, provided that the data samples
of different classes belong to separable regions of the image space,
or finite unions of separable regions. Such a hypothesis on the data
model, as opposed to alternative data models such as linear or union-
of-subspace models, is needed in order to be able to sample the im-
age space sufficiently with individual atoms so that a good classifi-
cation performance can be obtained with only 1-sparse approxima-
tions of data with the learned dictionaries. Finally, although we have
demonstrated our method on images undergoing a global geometric
transformation, our approach can possibly be extended to learn dic-
tionaries for images containing local geometric transformations with
the use of patch-based representations.

5. CONCLUSIONS

We have proposed a method to learn dictionaries in a transformation-
invariant way for fast image classification with 1-sparse approxima-
tions. Dictionaries are computed in an analytic basis in order to eas-
ily handle arbitrary geometric transformations of training data in the
learning. The proposed method is based on the idea of optimizing the
class-discrimination capability of individual atoms and gives better
classification results than purely approximative dictionary learning.
A future direction is to improve the sensitivity of the method to the
initial estimation of transformation parameters, possibly by perform-
ing the dictionary learning and image alignment in a joint manner.
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