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ABSTRACT
In this paper we propose to learn semantic kernels for scene
classification. We first decompose the Object Bank represen-
tation into subspaces associated with each object, Anchor Ob-
jects are then created by clustering for each scene class sep-
arately. The Anchor Distances are computed to measure the
distance between objects to scene classes. In order to take
the advantage of the discriminative information from differ-
ent scene classes, we propose semantic kernels based on the
anchor distances to different classes for scene classification.

Through extensive experiments on two benchmark dataset-
s: UIUC-Sports dataset and 15-Scene dataset, we prove that
the proposed Semantic Kernels can significantly improve
the original Object Bank and achieve state-of-the-art perfor-
mance.

Index Terms— Object Bank, Anchor Objects, Semantic
Kernels, Scene Classification

1. INTRODUCTION

In scene classification, how to measure the similarity between
two scene images based on local features is a key problem.
It is nontrivial due to that the cardinality of the image local
descriptor set varies with different images and the elements
are orderless.

The bag of words (BoW) model and match kernels [1] are
two effective approaches to this problem. In BoW model, lo-
cal feature descriptors for an image are projected into a new
representation space spanned by visual words in a vocabulary,
obtaining a histogram as a fixed-length vector to present the
whole contents in this image. However, for match kernel ap-
proach, the kernels over sets of local features are defined to
build the relations between two sets of local descriptors. In
[1], it is proved that BoW can be viewed as a special case of
the match kernels.

In fact, for image processing, the Object Bank approach
is another way to describe an image into by a fixed dimension
feature vector. The Object Bank represents an image as a re-
sponse map of a large number of pre-trained object detectors
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and has achieved dramatic performances for visual recogni-
tion [2]. Due to the explicit detection of objects in images,
the Object Bank, as a high-level representation, provides an
effective avenue to understand scene images. Although the
Object Bank approach can fill the semantic gap to some ex-
tent, it treats the object filters response equally, which is not
satisfied our common sense. For scene classification, in fac-
t, each scene is composed of several objects organized in an
unpredictable layout, and objects play different roles for dif-
ferent scene classes. For example, ‘bed’ is more significant
than ‘window’ for a bedroom scene while ‘table’ is crucial to
an office scene.

In this paper, with the aim to take advantages of the high-
level representation and to improve the Object Bank represen-
tations, we propose semantic kernels for scene classification.
The rest of this paper is organized as follows. We revist the
high-level image representation based on object bank in Sec-
tion 2. In Section 3 we describe the proposed discriminative
kernel in details. Section 4 demonstrates our experiments and
results and our work is concluded in Section 5.

2. OBJECT BANK

The core of the idea in the object bank representation is to
decompose an image according to a pre-refined object filter
bank. Specifically, by concatenating the max response of each
filter, we can generate the representation with each dimension
corresponding to one object filter with certain a configure (s-
cale, location and profile). From a semantic point of view, the
obtained representation can give the details about the content
of the image on behalf of how likely the corresponding object
appears in this image.

In [2], according to the frequency of occurrences of ob-
jects in different datasets, 177 of the most frequent objects
filter are trained to build object bank.

Given an image Q and a filter F in the object bank, the
response of the filter at point (x, y) is the sum of products
of the filter coefficients and the corresponding neighborhood
points in the area spanned by the filter mask, which can be
formulated as:
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Moving the center point (x, y) to go through all the pixels
in the image, responses for all the pixels are obtained. Since
the filter can reflect the outline of each object, the sum oper-
ation in (1) essentially calculates the similarity of the object
in the filter and the according image patch. If normalized, the
maximum value can be viewed as the possibility of the object
occurring in the image.

An image is finally represented by a feature vector con-
catenating the maximum responses of all the object filters.
If the scales and the location information by spatial pyra-
mid are further considered, the feature vector could be in a
high-dimensional space. In our experiments, 177 object fil-
ters (each with front and profile models), 6 scales and 3-level
spatial pyramid (with 1 + 4 + 16 location’s information) will
lead to 177× 2× 6× 21 = 44604 dimensions. Then for one
image, this vector with 44604 dimensions reflects the contents
of this image.

3. LEARNING SEMANTIC KERNELS

Given an image Q, its representation by the Object Bank is
IQ = {IQ1 , IQ2 , ..., IQN}, where N = 177 is the number of
objects with different profiles, scales and from differen level-
s of the spatial pyramid. In the Object Bank approach, it is
assumed that each object is independent from others. There-
fore, in the Object Bank representations, responses from all
the object filters can be treated separately. For instance, IQn is
the corresponding subspace from the object n.

In the following sections, we divide the whole space into
177 subspaces according to different objects, and each sub-
space corresponds to responses from different objects with 2
profiles, 6 scales and 21 different pyramid levels. Thus the
dimension of each subspace should be 2× 6× 21.

3.1. Anchor Objects

As is known, the success of the Object Bank is the explicit
modeling of objects which could incorporate more semantic
meaning. In this paper, we aim to take the advantages of high-
level representation of the Object Bank, and propose to deal
with the distances between objects and classes, which is in-
spired by the naive Bayes nearest neighbor (NBNN) classifier.
However, the nearest neighbor search in NBNN is extremely
time-consuming.

To alleviate the computational burden of the NN search
in NBNN, instead of using NN objects we propose to usee
fewer representative objects called Anchor Objects for each
subspace with certain object categories. This can significantly
speed up the algorithm while being more robust and insensi-
tive. The Anchor Objects could be obtained by either random

sampling or clustering. We use the k-means clustering algo-
rithm to create the Anchor Objects due to its effectiveness and
efficiency. In addition, to be more discriminative, we propose
to generate the Anchor Objects for each class separately.

In Fig. 1, it can be seen that the anchor points (objects)
possess better generalization properties than the NN points.
The red stars represent test samples, and the length of dashed
line means the NN distance while the length of real line mean-
s the distance to the anchor point. As we can see that for
the points in the misleading region (intersection) between t-
wo classes, the distances based on anchor points are more
meaningful.

Fig. 1. Illustration of anchor objects.

3.2. Anchor Distances

Once we obtain the K Anchor Objects for each scene class by
k-means, a complete new space spanned by the Anchor Ob-
jects can be obtained. Thus for each test sample, the distances
of the object n to all the Anchor Objects for a scene class c
in the nth subspace will compromise a vector with each ele-
ment corresponding the distance to an anchor [3], which we
call Anchor Distance.

In fact, for each test sample, only the distance to the n-
earest anchor in one scene class is crucial to represent the
distance to this class. It expresses the concept of object-to-
class distance, which is the minimum among the distance of
the test sample to anchors in scene class of nth subspace. The
whole algorithm to compute the distance of subspace n in test
image Q, named In, to scene class c is shown in Algorithm 1.

Algorithm 1 Computation of the distance from Object n to
Class c
Input: Training dataset as Qn = {Q1

n, ...Q
c
n, ..., Q

C
n }

K as the cluster number in each class c
Output: The nearest anchor distance dA(In, c)

for all c ∈ C do
obtain K anchors {qc

n1, ...qc
nK} for the object subspace

samples in each class c by k-means on object subspace
training set Qc

n.
end for
dA(In, c) = mini=1,...K dis∗(In,qc

ni)
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The basic distance in Algorithm 1 noted as dis∗(.) can be
chosen as either the Manhattan distance in Equation 2 or the
Euclidean distance in Equation 3.

dM (Iin, Ijn) =
D∑

d=1

∣∣Iin(d)− Ijn(d)
∣∣ (2)

dE(Iin, Ijn) =
D∑

d=1

√
(Iin(d)− Ijn(d))2 (3)

3.3. Semantic Kernels

Inspired by the NBNN kernel [4], an extension of NBNN [5],
which kernleizes the image-to-class (I2C) distances for sup-
port vector machines (SVM), we propose the kernerlization
of the Anchor Distances.

Having dA(In, c), we can predict a test sample by choos-
ing the class with smallest sum of the dA as

∑
n dA(In, c). In

this summation, each object may play different roles to differ-
ent scene class. A smaller value of distance dA(In, c), means
this object is more significant than other objects to this scene
class.

In the NBNN classifier, only the shortest distance as
Eq.(4) is kept to predict the class labels, and the distances to
other scene classes are ignored, which in practice tends to be
less discriminative.

c∗ = argmin
c

∑
n

dA(In, c). (4)

In fact, these distances carry discriminative information
which could be useful for classification. In order to effec-
tively utilize those information, as the NBNN kernels, we
propose the kernerlization on the anchor distances to all the
classes.

For two sets of features as X = {Ix1 , ...Ixn , ...IxN} and
Y = {Iy1 , ...Iyn, ...I

y
N}, the normalized sum match kernel as

[6] are selected to satisfy the mercer condition in Eq. (5):

K(X,Y ) =
∑
c∈C

Kc(X,Y )

=
1

|X||Y |
∑
c∈C

∑
n

∑
n

kc(Ixn , I
y
n)

(5)

where C = {1, ..., c, ..., C} is the set of all classes. The local
kernel kc(Ix∗ , I

y
∗ ) is selected as:

kc(Ixn , I
y
n) = ϕc(Ixn)

Tϕc(Iyn)

= f c(dA(I
x
n , 1), ..., dA(I

x
n , C))T

× f c(dA(I
y
n, 1), ..., dA(I

y
n, C))

(6)

dA(I
x
∗ , c) denotes the anchor distance from Ixn to Class c. By

using the local kernel function, Ix∗ and Iy∗ are not compared

15-Scene
bedroom inside of city industry kitchen
mountain living room highway suburb

coast open country store office
street tall building forest

UIUC-Sports
rowing snow boarding badminton polo
sailing rock climbing croquet bocce

Table 1. Scene categories in 15-Scene and UIUC-Sports

directly. Even if the two features Ixn and Iyn are far apart in
the original feature space, they are considered to be similar
if they have close distance to the same class. In practice, the
kernel function f c(dA(I

x
n , 1), ..., dA(I

x
n , C)) are chosen as:

f c(dA(I
x
n , 1), ..., dA(I

x
n , C)) = dA(I

x
n , c) (7)

As mentioned above, the Anchor Distances explicitly in-
corporates the semantic information, namely the probability
of an object occurring in a scene, the obtained kernels can
therefore carry the semantic meanings and can be regarded as
Semantic Kernels.

4. EXPERIMENTS

To validate the effectiveness of the proposed semantic kernels
for scene representation and classification, we have conducted
extensive experiments on two benchmark scene datasets, i.e.,
the 15-Scene and UIUC-Sports datasets shown in Table 1.

4.1. Experiments Setting

We follow the experimental settings in [2]. For the 15-Scene
dataset [7], 100 images are randomly selected as training data
and the rest for testing. For the UIUC-Sports dataset [8], 70
images are randomly drawn for training and 60 for testing.
A linear SVM classifier [9] is employed for the final scene
classification. 44604 dimensions (with 177 object filters, 2
profiles, 6 scales and 3 spatial pyramid )is considered in our
experiments. As for K, the number of anchors in each scene
class, it is fixed as 10. The Object Bank approach is chosen
as baseline here. In Table 2, the discriminative representation
in [3] is also incorporated for comparison.

4.2. Results on 15-Scene

The results on the 15-Scene dataset are shown in Table 2. We
observe that the proposed semantic kernels with either the
Manhattan or Euclidean distance can significantly improve
the baseline Object Bank approach. Furthermore, the seman-
tic kernels can also outperform the discriminative represen-
tations in [3]. The reason is probably due to that distances
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dM dE
Discriminative Representation [3] 84.79% 84.52%

Semantic Kernels 85.07% 84.88%
Object Bank 82.03%

Table 2. Performance of semantic kernels on 15-scene
dataset.

dM dE
Discriminative Representation [3] 82.85% 82.73%

Semantic Kernels 81.79% 82.04%
Object Bank 77.5%

Table 3. Performance of semantic kernels on UIUC-Sports
dataset.

to all scene classes are exhaustively utilized by the kernels.
In addition, it shows the similar performance for the Man-
hattan and Euclidean distances both for discriminative repre-
sentation and the semantic kernels. The best performance is
85.07% with the Manhattan distance by the proposed seman-
tic kernels.

4.3. Results on UIUC-Sports

Results on the UIUC-Sports dataset are reported in Table
3. The proposed semantic kernels significantly improves the
Object Bank approach with a large margin, from 77.5% to
81.79% and 82.04% with the Manhattan and Euclidean dis-
tances, respectively. However, compared with the discrimina-
tive representations, the performance of the semantic kernels
is a little lower. The reason is that in the semantic kernels,
the dimension of mapped space is just the number of classes,
while the dimension in the discriminative representations is
K times of number of classes. For the challenging complex
dataset e.g., UIUC-Sports, higher dimension is helpful for
better performance.

4.4. Comparison with State of the Arts

We have also compared the proposed approach with the state-
of-the-art methods in Table 4. We can see that out semantic k-
ernels has achieved comparable even much better results than
most of recently proposed methods in [10, 11, 12, 13, 14],
which validate the effectiveness of the proposed semantic k-
ernels.

5. CONCLUSION

In this paper, we have proposed semantic kernels for scene
classification. By considering different object effects during
classification and taking advantage of the discriminative in-
formation in the distance space, the proposed approach can

Methods 15-Scene UIUC-Sports
Semantic Kernels 85.07% 82.04%

Shabou[10] 82.67% 87.23%
Niu[11] 82.5% 78%
Liu[12] 82.7% 82.29%
Gao[13] 83.68% 84.92%
Dixit[14] 83.2% 82.5%

Table 4. Performance comparison of the proposed approach
with state-of-the-art.

provide more effective high-level representations than the o-
riginal Object Bank (OB) approach. Extensive experiments
on two benchmark 15-Scene and UIUC-Sports datasets have
demonstrated that the proposed semantic kernels can signifi-
cantly improve the original OB and achieve the state-of-the-
art performances.
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