
SPARSE RECONSTRUCTION FOR DISPARITY MAPS USING COMBINED WAVELET AND
CONTOURLET TRANSFORMS

Lee-kang Liu∗ and Truong D. Nguyen

University of California, San Diego
Electrical and Computer Engineering

http://videoprocessing.ucsd.edu

ABSTRACT
Disparity estimation is a key component in 3D image pro-
cessing, yet dense estimation is a computationally intensive
task. In this paper, we propose to estimate the dense dispari-
ties from a small set of spatial measurements. Observing that
disparity maps mainly contain contours and smooth regions,
we formulate the problem as a sparse reconstruction problem
using a combined wavelet and contourlet bases. We show
that the combined transform yields better reconstruction re-
sults than existing methods.

Index Terms— Sparse reconstruction, dense disparity es-
timation, wavelet, contourlet, combined transform, conjugate
subgradient

1. INTRODUCTION

As 3D technology is getting mature, depth data has been
widely used for many applications, e.g., 3D model construc-
tion [10], online fitting rooms [4], etc. To acquire depth
information, a variety of devices have been developed (e.g.,
Kinect, time-of-flight camera, LiDAR). In addition to these
direct acquisition methods, an indirect method is to estimate
disparities from a pair of stereo images using computational
methods. Although direct acquisition methods are faster,
these devices are more expensive than stereo cameras. How-
ever, indirect depth estimation is sensitive to illumination,
noise, stereo camera alignments, and other camera factors.
Although some feature points are relative robust, they are
usually sparse. For instance, image corners and blob shape
features are used for localization applications [8], [11]. Ac-
cording to the characteristic of distinct local information,
these feature points are comparatively robust during match-
ing process. Since the number of feature points is typically
small, it is an interesting research problem of how to estimate
a dense disparity map from sparse samples.

Recently, Elad et al. proposed a well-known method, K-
SVD, that reconstructs an image from sparse samples, utiliz-
ing a learned overcomplete dictionary [1], [15]. K-SVD has
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been extended for color image denoising, face image recovery
and image inpainting [7], [12]. However, unlike natural im-
ages, disparity maps, which encode depth information, have
simple structures and possess piecewise smooth regions. Tak-
ing advantage of these properties, several works studied the
problem of reconstructing dense disparity maps from sparse
measurements [2], [3], [6]. Hawe et al. proposed a model
that reconstructs dense disparity maps by considering sparsity
in wavelet transform domain [9]. Although the authors claim
that disparity maps can be reconstructed from sparse samples,
the sampling points are limited to be on edge locations. As
the sampling locations are not restricted, the resulting dispar-
ity map has staircase artifact along object boundaries. Besides
edges and object boundaries, disparity map also has abundant
smooth regions. Our proposed method uses both wavelet and
contourlet to preserve structures within disparity maps. In this
paper, we have two contributions.

• We propose a method for reconstructing dense dispar-
ity maps from sparse samples by utilizing combined
wavelet and contourlet transforms.

• Experimentally, we justify that wavelet has better rep-
resentation for local set of points, and contourlet has
better representation for image contours.

The paper is organized as follows. After reviewing ex-
isting methods for disparity reconstruction in Section 2, we
present the proposed method in Section 3. Experimental re-
sults are shown in Section 4. Finally, we summarize the paper
and address our future work in Section 5.

2. SPARSE REPRESENTATION AND
RECONSTRUCTION OF DISPARITIES

2.1. Representations of Disparities

Wavelet and contourlet transforms are widely used in image
processing applications since images can be represented by a
few coefficients in both transform domains. However, the dif-
ference between wavelet and contourlet is that wavelet trans-
form has square compact support, whereas contourlet has di-
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rectional rectangular compact support. By applying direc-
tional filter banks, contourlet is suitable for analysing image
contours [5], [14]. Fig. 1 summarizes a study of how efficient
wavelet and contourlet perform for localized set of singular
points (dots) and contours. The columns show the image (first
column), its reconstruction using a few large coefficients for
contourlets (second column) and for wavelets (third column).
As observed, the wavelet transform has better reconstruction
for localized area, whereas the contourlet is especially suited
for contours. Fig. 2 compares the reconstruction quality for
disparity map and color image of the Aloe image. As ob-
served, both wavelets and contourlets perform well for dis-
parity maps.
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Fig. 1: Mean square error v.s M the most significant coeffi-
cients. Erroneous line structures appear in (b) and result in
higher MSE than (c). Set of singular points results in non-
efficient representation for image contours (f), hence wavelet
have higher MSE than contourlet for ellipse image.

2.2. Sparse Reconstruction of Disparities

From compressed sensing theory, sparsity in transform do-
main corresponds to the number of samples in spatial do-
main for image reconstruction [3]. Given transform bases,
M ∈ Rn×n, the minimum number of samples, m, in spatial
domain is.

m ≥ C · µ2(M) · ‖x‖0 · log (n) (1)

where the `0 norm indicates the non-zero elements in trans-
form coefficients, x ∈ Rn×1. The variable µ(M) represents
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Fig. 2: Mean square error v.s. M the most significant coef-
ficients. Both wavelet and contourlet has better efficiency in
representing disparity maps.

the mutual coherence of M, and it is defined as, µ(M) =√
n ·max

i,j
|M(i, j)|.

Before setting up the problem formulation, we first de-
scribe the notation used. Variables B1 ∈ Rn×n and B2 ∈
Rn×n are wavelet and contourlet bases. W1 ∈ [0, 1]n×n

and W2 ∈ [0, 1]n×n are two diagonal matrices with zeros
at the locations of approximation coefficients and ones at the
locations of detail coefficients. S ∈ [0, 1]m×n is a sampling
matrix. Variables b ∈ Rm×1 and u ∈ Rn×1 denote the ob-
servations (sparse samples) and disparity map, respectively.

Hawe et al. proposed a model for dense disparity map
reconstruction by utilizing wavelet transform [9]. Since dis-
parity maps have piecewise smooth regions, for preserving
the discontinuity, the authors introduced total variation as a
prior. Moreover, since the approximation of total variation
results in bias in low frequency components and the sparsity
exists in detail coefficients, the authors applied the weighting
matrix W1 for discarding approximation coefficients, and the
problem is described as follows.

minimize
u

‖W1B1u‖1 + β‖u‖TV

subject to b = Su
(2)

Due to the reasons that disparity maps have sparsity in both
wavelet and contourlet transform domains, wavelet has better
representation for localized features, and contourlet has better
representation for contours, we propose to use both wavelet
and contourlet transforms for dense disparity map reconstruc-
tion.

minimize
u

‖W1B1u‖1 + ‖W2B2u‖1 + β‖u‖TV

subject to b = Su
(3)

According to the Lagragian duality and the equivalent form,
u = B−1

1 x, the problem can be reformulated as an uncon-
strained minimization problem.

minimize
x

1

2
‖b− SB−1

1 x‖22 + λ‖W1x‖1

+ γ‖W2B2B
−1
1 x‖1 + β‖B−1

1 x‖TV
(4)
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3. PROPOSED ALGORITHM

For solving the unconstrained minimization problem, similar
approach is discussed in [9]; however, the main difference
is that we consider both wavelet and contourlet transforms.
Referring to Algorithm 1, finding gradient of each terms of
(4) is the first step, and the gradient of ‖W2B2B

−1
1 x‖1 at

location k is,

∂x‖W2B2B
−1
1 x‖1(k) =

{
B1B

−1
2 sign

[
W2B2B

−1
1 x

]}
(k)
(5)

where the definition of the sign function is,

sign (v) =


1 if v > 0

0 if v = 0

−1 if v < 0

(6)

Since the anisotropic total variation is equivalent to `1 norm,
by introducing difference operator D = [Dx,Dy]

T , we can
rewrite ‖ · ‖TV as,

‖s‖TV = ‖Ds‖1

=
∑
x,y

[√
|sx+1,y − sx,y|2 +

√
|sx,y+1 − sx,y|2

]
(7)

Therefore, the gradient of ‖B−1
1 x‖TV is,

∂x‖B−1
1 x‖TV (k) = ∂xHδ

(√(
ekDxB

−1
1 x

)2)
+ ∂xHδ

(√(
ekDyB

−1
1 x

)2)
(8)

where ek is a vector with 1 at location k, and 0 otherwise.

∂xHδ

(√
s2x

)
=


B1D

T
x e

T
k sign(sx) if |sx| ≥ δ

B1D
T
x e

T
k sx

δ
otherwise

(9)

and

∂xHδ

(√
s2y

)
=


B1D

T
y e

T
k sign(sy) if |sy| ≥ δ

B1D
T
y e

T
k sy

δ
otherwise

(10)

where sx = ekDxB
−1
1 x and sy = ekDyB

−1
1 x. Finally, the

conjugate subgradient of ‖W1x1‖1 is as follows

5‖W1x‖1 =
∑
k


sign([W1x] (k)) if |W1x|(k) 6= 0

− sign(q(k)) ·min {abs(q(k)), 1}
otherwise

(11)
where the variable q is,

q =
1

λ
{−B−T

1 ST
(
b− SB−1

1 x
)
+ γ 5 ‖W2B2B

−1
1 x‖1

+ β 5 ‖B−1
1 x‖TV }

(12)

Algorithm 1 Disparity Reconstruction Algorithm
1: procedure DENSERECONSTRUCTIONWTCT(b, S)
2: initialization
3: x0 = B−T

1 STb , h0 = −d0, α−1 = 1 , i = 0
4: while not converge do
5: di+1 = Subgradient of (3) using (5), (8) and (11).
6: αi = BacktrackingLineSearch(xi, αi−1)
7: xi+1 = xi + αihi

8: hi+1 = −di+1 +
dT
i+1(di+1−di)
hT
i (di+1−di)

9: end while
10: end procedure

As the gradients are calculated, this unconstrained min-
imization problem can be solved by directional gradient de-
scent. Referring to Algorithm 1, the step size, αi, is esti-
mated by backtracking line-search algorithm [13], and we
use Hestenes-Stiefel (HS) method for updating the directional
gradient, hi. Finally, the overall algorithm for dense disparity
reconstruction is shown in Algorithm 1.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

In our experiment, we test disparity maps from Middlebury
dataset (vision.middlebury.edu/stereo/). The ground truth dis-
parities and reconstructed results are shown in Fig. 3. The
size of each disparity maps is 512×512, and the range of dis-
parity values is [0-255]. Regarding the parameters, we use
”db2” and level=2 in wavelet transform, and choose nLevel
= [5, 6] for contourlet transform. In addition, the regulariza-
tion parameters are λ = 0.01, γ = 0.01 and β = 0.5. We
examine reconstruction performance by randomly selecting
5%, 10%, 15%, 20% and 25% sampling points. Two com-
parisons are presented in our experiment. Besides the model
proposed in [9], we also consider the case that only uses con-
tourlet transform. The PSNR and mean absolute error (MAE)
are presented to evaluate the performance of the algorithms.

Given an estimated image Î, ground truth image I and
total number of pixels, N , the definition of MAE is:

Mean Absolute Error =
1

N

∑
i,j

|I(i, j)− Î(i, j)| (13)

4.2. Discussions

As shown in the first row of Fig. 31, the proposed CT+WT
method has the highest PSNR. Since the proposed CT+WT
method utilizes both contourlet and wavelet transforms, lo-
cal features and contours are reconstructed with high quality.
Additionally, the proposed CT method has higher PSNR than

1For more experimental results please refer to our research website:
http://videoprocessing.ucsd.edu/˜LeeKang/research.html
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HAWE’11 because the major structures of disparity maps are
contours. Referring to MAE curves, the proposed CT+WT
method outperforms the proposed CT and HAWE’11. As
disparity maps correspond to depth information, the lower
MAE infers better dense depth estimation performance. Thus,
the proposed CT+WT method not only reconstructs disparity
structures but also has less depth errors. While visually com-
paring object boundaries, the proposed CT+WT and proposed
CT have smooth boundaries, whereas the staircase artifact
along object boundaries exists in HAWE’11 method (Row
3 of Fig. 3). In summary, the experiment shows that us-
ing combined wavelet and contourlet transforms has better
reconstruction performance than utilizing either wavelet or

contourlet transform.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a sparse reconstruction algorithm
that utilizes both wavelet and contourlet transforms, and
demonstrate that wavelet has better representation for lo-
calized features and contourlet has better representation for
object edges. The experimental results show that the pro-
posed CT+WT method outperforms the proposed CT and
HAWE’11 methods since contours and singular points are
two components that exist in disparity maps.
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Fig. 3: Reconstructed disparity maps from 10% random samples. (Row 1) Evaluations, (Row 2) Aloe, (Row 3) Zoom in of
Aloe and Art, (Row 4) Art. Referring to Row 3, results from proposed CT + WT have smooth object boundaries (Art) and
better representations for zigzag leaves (Aloe).
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